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Abstract

In this paper we design, characterize in closed-form, and evaluate a new index rule for Marko-
vian time-varying channels, which gives rise to a simple opportunistic scheduling rule for flow-level
scheduling in wireless downlink systems. For user channels we employ the Gilbert-Elliot model with
a flow-level interpretation: the channel condition follows a general two-state Markov chain with dis-
tinct probabilities of finishing the flow transmission. The index value of the bad channel condition
takes into account both the one-period and the steady-state potential improvement of the service
completion probability, while the good channel condition gets an absolute priority with the cµ-index
(well-known to be throughput-optimal) as the tie-breaking rule. Our computational study confirms
near-optimality of the proposed rule in most of the instances, and suggests that information about
the channels steady state is often enough to achieve near-optimality.

Keywords: Markov Decision Process, dynamic programming, opportunistic scheduling, cµ-rule, rest-
less bandits, Whittle index

1 Introduction

In this paper we study the end-user experience and the overall performance of systems providing ser-
vice via time-varying channels. Such systems are now ubiquitous in communications due to the recent
technological advances in wireless communication, including local area networks, cellular data networks,
cognitive radio systems, and satellite communication. The development of future technological standards
builds on the same paradigm, since time-varying channels can be exploited by opportunistic scheduling
to enhance the system capacity, as shown in Knopp and Humblet (1995). These systems are typically
locally centralized, i.e., they involve a network of central elements (e.g., routers, base stations, satellites),
which continuously collect information and adaptively decide the bandwidth allocation to a subset of
users demanding service.

The main implementation differences in the above-mentioned systems and their variants imply dif-
ferent amounts of information available for the scheduler. The possibility of exploitation of available
information is essentially transformed into different overall performance and end-user experience from
the use of the service. Since information gathering requires higher implementation costs and may have
other non-desirable effects (such as delays), it is important to understand how much (in terms of perfor-
mance) can be gained in such systems if more information is available. In other words, we need to study
how much is lost if some information is unobservable with respect to the best policy implementable in
fully-observable systems, which is the objective of this paper.

∗The author would like to thank to Samuli Aalto, Urtzi Ayesta, Thomas Bonald, Sem Borst, Martin Erausquin, Matthieu
Jonckheere, and Ina Maria (Maaike) Verloop for fruitful and encouraging discussions on this topic. Research partially
supported by grant MTM2010-17405 (Ministerio de Ciencia e Innovación, Spain) and grant PI2010-2 (Department of
Education and Research, Basque Government). NOTICE: This is the author’s version of the work that was published as
a journal paper with the following reference: Jacko, P. (2011): Value of Information in Optimal Flow-Level Scheduling of
Users with Markovian Time-Varying Channels. Performance Evaluation ??, pp. ???-???.
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The above question can be formulated mathematically as the problem of optimal user scheduling in
a system with fixed bandwidth capacity and with time-varying service rate. The focus is on users with
finite-size jobs that randomly arrive and leave once the service of their job is completed. Scheduling
of such users is known as flow-level scheduling, and is understood as extremely difficult to solve for
optimality due to the fixed bandwidth capacity constraint (Ayesta et al., 2010). Research has therefore
mainly focused on characterizing the stability region and identifying maximally stable policies (Borst,
2005; Bonald et al., 2009; Aalto and Lassila, 2010; Ayesta et al., 2011) and on partial characterization
of optimal policies, mainly under the restrictive time-scale separation principle or for single-user-class
systems (Sadiq and de Veciana, 2010; Aalto et al., 2011). Nevertheless, the scheduling optimization
problem becomes analytically tractable if the fixed-capacity constraint is relaxed so that the bandwidth
allocation must be satisfied only on average (see, e.g., Whittle, 1988; Knopp and Humblet, 1995; Jacko,
2010b).

We will focus on a downlink system, although both downlink and uplink transmission can be covered
by the same model as long as scheduling is centralized (typically at the base station). That is, at the
beginning of each slot, the scheduler decides which users are allowed to send/receive data. If a scheduled
user is waiting for data available at the base station (downlink), then the scheduler allows the base
station to transmit data via her channel to the scheduled user. If a scheduled user wants to send data
(uplink), then the scheduler informs the user at the beginning of the slot that the channel is available.
If synchronization of users is possible, then the uplink case can be implemented by giving the users the
possibility to sense the availability of their channel during a subpart of the slot and the scheduler to
send a noise during the sensing interval so that the user perceives that the channel is not available. This
modeling aspect does not differ from packet-level models (see, e.g., Liu et al., 2003, for a survey of packet-
level models). By packet-level models we understand scheduling of a fixed population of permanent users
wanting to send to or receive from a base station randomly arriving packets backlogged in user-dedicated
queues.

Although several modeling aspects of packet-level models and flow-level models are analogous, the con-
sideration of finite-length jobs makes the good scheduling policies completely different. The MaxWeight
scheduler proposed and proved maximally stable for a packet-level model with ON/OFF channels in
Tassiulas and Ephremides (1993) may not be maximally stable in flow-level models (van de Ven et al.,
2009). Another well-known scheduler, the Proportional Fair (PF) scheduler of the Qualcomm High Data
Rate (HDR) system 1xEV-DO (Bender et al., 2000), was shown to maximize the aggregate logarithmic
utility of obtained throughput in a packet-level model (Kushner and Whiting, 2004). The Markovian
variant of PF, so-called Relatively Best scheduler, is roughly equivalent to PF and maximally stable
under certain user symmetry conditions in flow-level systems (Borst, 2005), but may not be maximally
stable in general (Aalto and Lassila, 2010; Ayesta et al., 2010, 2011).

The above considerations have raised interest in designing and studying scheduling algorithms which
are maximally stable at flow-level (Bonald, 2004b; Sadiq and de Veciana, 2009; Aalto and Lassila, 2010;
Ayesta et al., 2010, 2011; Liu et al., 2011). Sadiq and de Veciana (2009) proposed a modification of the
MaxWeight scheduler, which at every slot serves the user with highest product of the time since arrival
and the actual transmission rate, with ties broken in favor of older users. The model in Liu et al. (2011)
tries to balance permanent users (with randomly arriving packets to the queue) and flows (that have
finite-size jobs to transmit). If there are only flows in the system, then priority is given to a user that is
in its best channel condition or whose job can be completed in one slot (with oldest-first or randomized
tie-breaking among such users), otherwise an arbitrary user is scheduled. These schedulers therefore
require the knowledge about the time since arrival or the remaining job size of each user.

More related to our paper are schedulers that rely on stochastic properties of user channels and job
sizes, which are more important from implementation point of view. For systems, in which the possible
channel conditions are discrete, existing patents (Chaponniere et al., 2002; Bonald, 2004a; Ayesta and
Jacko, 2010) propose to keep track of historical observations of the channel conditions of every user, which
(if the history window is large enough), provide an accurate estimate of the steady-state distribution of
channel conditions. Possible gains from the Score-Based (SB) scheduler were described in Bonald (2004b);
SB scheduler serves at each slot the user for which the ranking of the current channel condition over
possible channel conditions is best. Aalto and Lassila (2010) proposed the so-called Proportionally Best
(PB) scheduler, which at each slot serves a user whose ratio of the current channel condition with respect
to her best possible condition is highest. They further concluded that the shortest-remaining-processing-
time (SRPT) tie-breaking instead of randomized tie-breaking does not necessarily improve performance.
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The Potential Improvement (PI) scheduler for i.i.d. channel condition evolution was designed in Ayesta
et al. (2010) based on optimally solving a relaxation of the problem. PI serves at each slot the user with
highest ratio of the current transmission rate with respect to the expected potential improvement in the
service rate; if more than one user is in her best channel condition, then the user with shortest expected
job size is served (among such users).

Using the fluid-limit approach, Ayesta et al. (2011) proved for systems with i.i.d. channel condition
evolution that all the schedulers that serve a user in her best channel condition as long there is such
a user are maximally stable. Moreover, the authors proved that if a scheduler in addition serves the
user with shortest expected job size as the tie-breaking rule, then it is fluid-optimal. Note that SB,
PB, and PI satisfy the condition for maximal stability, but only PI is fluid-optimal. Of course, both SB
and PB could be easily modified by implementing the expected-job-size tie-breaking in order to become
fluid-optimal.

It is likely that i.i.d. channel condition evolution is usually unrealistic, but on the other extreme,
existing patents rely exclusively on an estimate of the steady-state distribution of the channel condition
in a certain time window, and design schedulers that take decisions based on such an information. For
instance, Ayesta and Jacko (2010) proposed the PI scheduler to be employed in systems with Markovian
channels by defining the probabilities qk,n from the estimate of the steady-state distribution of the channel
condition. However, the performance of PI scheduler in Markovian systems has not been studied yet and
it is not at all clear whether the results obtained for i.i.d. evolution remain valid if channel condition
evolution is Markovian, for which only an estimate of the steady-state distribution is known instead of
the real transition probabilities.

In this paper we approach the downlink optimal scheduling problem with Markovian channel condition
evolution, which is fundamentally more complex than the case of i.i.d. channel condition evolution. For
transparency, we focus on channels with only two possible conditions, so each channel is modeled by a
Gilbert-Elliot model (Gilbert, 1960). The problem is described in Section 2 in more detail.

The main contributions of the paper are as follows:

(i) a new flow-level MDP model for scheduling of users transmitting downlink/uplink via channels
with Markovian dynamics in Section 3,

(ii) an optimal index policy to a relaxation of the above model in Section 4; the policy shows that while
for infinite-size jobs there is no advantage of knowing the state transition probabilities over the
steady-state probabilities, such information becomes extremely profitable as the job size becomes
smaller.

(iii) a new simple and intuitive opportunistic scheduling rule based on the above index policy in Sec-
tion 5, which can be interpreted as a generalized Potential Improvement rule and recovers optimal
or asymptotically optimal policies in a list of special cases,

(iv) a numerical study in Section 6 comparing a variety of opportunistic scheduling rules with an
optimal policy, providing insights for resolving the trade-off between opportunistic scheduling and
maximum throughput policies in systems with time-varying service rate and suggesting that steady-
state information is often enough to achieve near-optimality.

2 Problem Description

We consider the job scheduling problem in a time-slotted system such as the CDMA 1xEV-DO (Bender
et al., 2000), in which the available service rate of each user fluctuates. Slots are denoted by t ∈ T :=
{0, 1, 2, . . . } and slot duration is denoted by ε (in seconds, typically of order 10−3). Jobs k = 1, 2, . . .
appear randomly from users that are within the transmission distance from a base station, which can
serve M users at every slot in parallel. Let ck > 0 be the holding cost per slot incurred for user waiting
while the transmission of job k is not completed. The channel for transmission of job k (or shortly
channel k) can take two quality conditions from a set N ′k := {B,G}. The transmission quality condition
of each channel evolves randomly and independently of the other channels and of the decisions of the base
station. The channel conditions evolution for job k is Markovian with one-slot transition probabilities
qk,n,m to move from condition n to condition m, satisfying qk,n,B + qk,n,G = 1 for all n ∈ N ′k. The
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channel-k condition transitions will be denoted by

Qk =

( B G

B qk,B,B qk,B,G

G qk,G,B qk,G,G

)

If channel k is in condition n, then job k is served with transmission/service rate sk,n (in bits per
second), which is assumed to be a multiple of 1/ε. Without loss of generality we assume that the channel
condition labels are ordered so that 0 ≤ sk,B ≤ sk,G. So, “B” can be interpreted as bad channel condition,
while “G” can be interpreted as good channel condition.

If the base station is allocated to a user whose job has already been completed, then no transmission
occurs. The base station is assumed to be preemptive (i.e., the service of a job can be interrupted at the
beginning of any slot even if not completed). Thus, the base station decides at the beginning of every
period to which user it should be allocated during that slot.

The goal is to minimize the expected aggregate holding cost over an infinite horizon under the
discounted criterion (with a discount factor 0 ≤ β < 1) and under the time-average criterion. The
problem with ck = 1 for all k corresponds to minimization of the mean waiting time and minimization
of the mean number of jobs in the system.

Ayesta et al. (2010) showed that the probability of departure of users with jobs with geometric size
can be computed in an approximate way when the expected job size (in bits) of a user is much larger
than the amount of bits that can be served in one slot. Next we give an exact probability of departure
that leads to the same approximation.

Lemma 1. Let the job size of user k be a geometrically distributed random variable denoted by Bk
(in bits), and let E[Bk] denote its expectation. Then the departure probability of a job k in channel
condition n is µk,n = min {1, 1− (1− 1/E[Bk])εsk,n} , which can be approximated if εsk,n/E[Bk] ≈ 0 by
µk,n ≈

εsk,n
E[Bk]

. We remark that the approximation is exact for εsk,n = 1.

3 MDP Formulation

In this section we present an MDP formulation of the discrete-time job sequencing problem (without
arrivals), in which we allow for time-varying departure probability as described in the previous sec-
tion. Ignoring arrivals makes the problem analytically tractable and leads to designing a well-founded
scheduling rule which we then propose to be used in systems with arrivals.

Consider K jobs labeled by k ∈ K waiting for service at a base station that can serve M jobs at a
time by transmitting a data flow through a dedicated channel to the corresponding user. The setting
fits the multi-armed restless bandit problem Whittle (1988); Niño-Mora (2001), which can be adapted to
job scheduling as described in Jacko (2010b).

Consider the time slotted into epochs t ∈ T := {0, 1, 2, . . . } at which decisions can be made.

3.1 Jobs, Channels, and Users

Every user k can be allocated either zero capacity of the base station or be one of the M users served.
We denote by A := {0, 1} the action space, i.e., the set of allowable levels of capacity allocation. Here,
action 0 means allocating zero capacity (i.e., “not serving”), and action 1 means allocating one capacity
(i.e., “serving”). This action space is the same for every user k. Further, under channel condition n, the
probability that the service of job k is completed within one period if being served is µk,n. According to
Lemma 1 we have 0 ≤ µk,B ≤ µk,G ≤ 1.

Each job-channel-user triple k is defined independently of other job-channel-user triples as the tuple(
Nk, (W a

k)a∈A , (R
a
k)a∈A , (P

a
k)a∈A

)
, where

• Nk := {0} ∪ N ′k is the state space, where state 0 represents a job already completed, and N ′k :=
{B,G} is the set of possible quality conditions of channel k provided the job is uncompleted;
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• W a
k :=

(
W a
k,n

)
n∈Nk

, where W a
k,n is the (expected) one-period capacity consumption, or work

required by user k at state n if action a is decided at the beginning of a period; in particular, for
any n ∈ Nk, W 1

k,n := 1,W 0
k,n := 0;

• Ra
k :=

(
Rak,n

)
n∈Nk

, where Rak,n is the expected one-period reward earned by user k at state n if

action a is decided at the beginning of a period; in particular, for any n ∈ N ′k,

R1
k,0 := 0, R1

k,n := −ck · (1− µk,n), R0
k,0 := 0, R0

k,n := −ck;

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the user-k stationary one-period state-transition probability matrix if

action a is decided at the beginning of a period, i.e., pak,n,m is the probability of moving to state m
from state n under action a; in particular,

P 1
k :=


0 B G

0 1 0 0
B µk,B (1− µk,B)qk,B,B (1− µk,B)qk,B,G
G µk,G (1− µk,G)qk,G,B (1− µk,G)qk,G,G

, P 0
k :=


0 B G

0 1 0 0
B 0 qk,B,B qk,B,G

G 0 qk,G,B qk,G,G

.
The dynamics of user k is thus captured by the state process Xk(·) and the action process ak(·),

which correspond to state Xk(t) ∈ Nk and action ak(t) ∈ A at all time epochs t ∈ T . As a result of
deciding action ak(t) in state Xk(t) at time epoch t, the user k consumes the allocated capacity, earns
the reward, and evolves its state for the time epoch t+ 1.

3.2 A Unified Optimization Criterion

Before describing the problem we first define an averaging operator that will allow us to discuss the
infinite-horizon problem under the traditional β-discounted criterion and the time-average criterion in
parallel. Let ΠX,a be the set of all the policies that for each time epoch t decide (possibly randomized)
action a(t) based only on the state-process history X(0), X(1), . . . , X(t) and on the action-process history
a(0), a(1), . . . , a(t−1) (i.e., non-anticipative). Let Eπτ denote the expectation over the state process X(·)
and over the action process a(·), conditioned on the state-process history X(0), X(1), . . . , X(τ) and on
policy π.

Consider any expected one-period quantity Qa(t)
X(t) that depends on state X(t) and on action a(t) at

any time epoch t. For any policy π ∈ ΠX,a, any initial time epoch τ ∈ T , and any discount factor
0 ≤ β ≤ 1 we define the infinite-horizon β-average quantity1

Bπτ
[
Q
a(·)
X(·), β,∞

]
:= lim

T→∞

T−1∑
t=τ

βt−τ Eπτ
[
Q
a(t)
X(t)

]
T−1∑
t=τ

βt−τ

. (1)

When β = 1, the problem is formulated under the time-average criterion, whereas when 0 < β < 1
the problem is considered under the β-discounted criterion (scaled by constant 1 − β). The remaining
case when β = 0 is considered in order to define a myopic policy. In the following we consider the
discount factor β to be fixed and the horizon to be infinite, therefore we omit them in the notation and
write briefly Bπτ

[
Q
a(·)
X(·)

]
.

3.3 Optimization Problem

Now we can define the optimization problem. Let ΠX,a be the space of randomized and non-anticipative
policies depending on the joint state-process X(·) := (Xk(·))k∈K and deciding the joint action-process

1For definiteness, we consider β0 = 1 for β = 0.
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a(·) := (ak(·))k∈K, i.e., ΠX,a is the joint policy space.
For any discount factor β, the problem is to find a joint policy π maximizing the objective given by

the β-average aggregate reward starting from the initial time epoch 0 subject to the family of sample
path allocation constraints, i.e.,

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(P)

subject to Eπt

[∑
k∈K

ak(t)

]
= M, for all t ∈ T

Note that the constraint could equivalently be expressed by restricting ΠX,a to policies satisfying∑
k∈K

ak(t) = 1 for any possible joint state-process history X(0),X(1), . . . ,X(t), for all t ∈ T .

4 Solution

Problem (P) can be relaxed by requiring to serveM jobs per slot only on β-average as proposed in Whittle
(1988), which is further approached by incorporating a Lagrangian multiplier ν and can be decomposed
into a parameterized optimization problem below (for more details see Jacko (2009)). Notice that any
joint policy π ∈ ΠX,a defines a set of single-user policies π̃k for all k ∈ K, where π̃k is a randomized and
non-anticipative policy depending on the joint state-process X(·) and deciding the user-k action-process
ak(·). We will write π̃k ∈ ΠX,ak

. We will therefore study the user-k subproblem

maxeπk∈ΠX,ak

Beπk
0

[
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

]
. (2)

The main idea of our approach is to identify a set of optimal policies π̃∗k for (2) for each k ∈ K, and
using them to construct a joint policy π, feasible though not necessarily optimal for problem (P).

4.1 Optimal Solution to Single-User Subproblem under the Gilbert-Elliot
Channel Model

In certain cases, problem (2) can be optimally solved by assigning a set of index values νk,n to each state
n ∈ Nk (Niño-Mora, 2007b; Jacko, 2010a). If this is the case, the problem is so-called indexable. In
the following we prove that jobs with Gilbert-Elliot channel are indexable and we characterize the index
values.

For the Gilbert-Elliot model, assuming qk,B,G > 0 so that the steady-state distribution exists and is
positive for condition G, let us define the following weighted harmonic mean of the one-period channel
condition transition probability and of the steady-state channel condition probability,

q∗k,B,G :=
1

1− β(1− µk,G)
qk,B,G

+
β(1− µk,G)

qSS
k,G

, (3)

where the steady-state probability of matrix Qk for condition G can be easily shown to be

qSS
k,G =

qk,B,G
1 + qk,B,G − qk,G,G

. (4)

Let us denote the index values for user k by

ν∗k,G :=
ckµk,G
(1− β)

, ν∗k,B :=
ckµk,B

(1− β) + βq∗k,B,G(µk,G − µk,B)
, ν∗k,0 := 0. (5)

The following are the main theoretical results of this paper.
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Proposition 1 (Optimality of Threshold Policies). For every real-valued ν there exists n ∈ Nk ∪ {−1}
such that threshold policy serving in states SN−n := {m ∈ Nk : m > n} and not serving otherwise is
optimal for problem (2).

Proposition 2 (Indexability). The following holds for problem (2) of user k:

(i) if ν ≤ ν∗k,n, then it is optimal to serve under user’s k channel condition n ∈ N ′k;

(ii) if ν ≥ ν∗k,n, then it is optimal not to serve under user’s k channel condition n ∈ N ′k;

(iii) if ν ≤ ν∗k,0, then it is optimal to serve when the job k is already completed (i.e., when n = 0);

(iv) if ν ≥ ν∗k,0, then it is optimal not to serve when the job k is already completed (i.e., when n = 0);

4.2 Optimal Solution to Lagrangian Relaxation

The vector of policies π∗ := (π̃∗k)k∈K identified in Proposition 2 is formed by mutually independent
single-user optimal policies, therefore this vector is an optimal policy to the Lagrangian relaxation of the
original problem.

5 New Opportunistic Scheduling Rule

Since the original scheduling problem requires to allocate the base station to exactly M jobs, at every
slot t we propose to allocate the base station to the M jobs with the highest actual index value ν∗k,Xk(t).
In the following we discuss this rule under the time-average criterion, in which the index value simplify
and the rule can be interpreted as a generalized Potential Improvement rule.

5.1 Generalized Potential Improvement Rule

Under the time-average criterion (β = 1), the index values in (5) simplify to the following values, which
we term the Generalized Potential Improvement (PI*) index:

ν∗k,G :=∞, ν∗k,B :=
ckµk,B

q∗k,B,G(µk,G − µk,B)
, ν∗k,0 := 0,

Due to the infinite index value of channels in good condition, in addition we propose the following
tie-breaking rule: If more than M channels are in good condition, then allocate the base station to the
M jobs with the highest actual second-order index value

lim
β→1

(1− β)ν∗k,Xk(t) =

{
ckµk,G, if Xk(t) = G,
0, otherwise.

Such a tie-breaking is based on the second term of the Laurent expansion of ν∗k,n at β = 1, so it induces
the same policy as the discounted rule for β close enough to 1. This tie-breaking may itself have ties;
these are resolved arbitrarily.

The scheduling rule using the above index values and tie-breaking quantities will be shortly called the
PI*-rule, as it is a generalization of the PI-rule proposed in Ayesta et al. (2010) for i.i.d. time-varying
channels. Of course, under i.i.d. time-varying channels (i.e., when qk,G,G = qk,B,G) the two rules are
identical since q∗k,B,G = qk,B,G (which in fact holds for any β).

The PI*-rule can be rewritten algorithmically in order to prescribe which user to serve at every slot
as follows:

(i) pick M users with highest value ckµk,G from among the users in condition G;

(ii) if M ′ < M users are in condition G, then pick (in addition to those in condition G) M −M ′ users
in condition B with highest value ν∗k,B
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Thus, the PI*-rule results in giving absolute priority to users whose actual channel condition is good
(condition G), i.e., the base station can serve a user with bad channel quality (condition B) only if there
are not enough users with good channel quality. Further, if there are several users with absolute priority,
PI* prescribes to serve users according to the classic cµ-rule, where µ is the instantaneous job completion
probability (under the good channel condition), which is known to be throughput-optimal if the users
are always in the good state.

On the other hand, if there not enough users with channels in good condition, then PI* allocates
the base station also to the users with the highest ratio of the actual departure probability (multiplied
by the holding cost) with respect to a factor that can be interpreted as the potential improvement of
the departure probability, where the improvement is measured by a weighted harmonic mean of the
one-period probability and the steady-state probability of moving to condition G.

5.2 Performance of PI* Rule in Systems with Arrivals

Although the new opportunistic rule was derived in a model without arrivals, in the following we give a
list of conditions under which the PI* rule is optimal or asymptotically optimal in systems with arrivals.
Some of the results apply to multi-class system, in which the jobs with the same characteristics (except
for the actual channel condition) are grouped into K classes.

Of special importance will be the cµ-rule, which has been proved optimal in single-server scheduling
of jobs with geometric job sizes in case of no channel variation Buyukkoc et al. (1985):

cµ-rule: Serve the non-empty class with the highest value ckµk.

As a consequence, we have the following two results.

Proposition 3. If qk,B,G = qk,G,B = 0 for all k (so that no time-variation is present) and M = 1, then
the PI* rule is optimal under arbitrary arrivals. Note that it is equivalent to the cµ-rule, in which µk is
the job completion probability under the initial channel condition.

Proposition 4. If β = 0 and M = 1, then the PI* rule is optimal under arbitrary arrivals. Note that
it is equivalent to the cµ-rule, in which µk is the job completion probability under the actual channel
condition.

Lott and Teneketzis (2000) gave sufficient conditions for optimality of the cµ-rule in queueing systems
with M ≥ 1 servers (which cannot serve more than one user from the same queue) and with ON/OFF
channels (in which µk,B = 0). In that setting, the rule serves M non-empty and connected (i.e., in
condition G) queues with highest index value ckµk,G. These results can be adapted to PI* as follows.

Proposition 5. If channels of all the users belonging to the same class are perfectly correlated, µk,B = 0
for all k, and at most one job of every class can be served (but number of classes served M ≥ 1), then
the PI* rule is optimal under arbitrary arrivals, if there is a labeling of classes such that

ckµk,G
1− β

1− β + βµk,G
≥ clµl,G, for all 1 ≤ k < l ≤ K. (6)

Moreover, if the arrivals are Bernoulli with probability λk of an arrival for every class k, then the
condition can be relaxed to

ckµk,G
1− β

1− β + βµk,G(1− λk)
≥ clµl,G, for all 1 ≤ k < l ≤ K. (7)

Notice that the first optimality condition is never satisfied for β = 1, which corresponds to the time-
average criterion. Notice also that if there is exactly one job arrival to each class (λk = 1 for all k), then
the second condition is satisfied for any β. We finally remark that these optimality results hold also for
the finite-horizon optimization problem.

Ayesta et al. (2011) showed that all the so-called best rate priority rules are maximally stable and
fluid-optimal in systems with i.i.d. channel evolution and capacity M = 1 job in service. Such rules
must give priority to users in the good condition, and to choose among them accordingly to the cµ-rule;
both these conditions are satisfied by PI*.
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Proposition 6. If qk,B,G = qk,G,G for all k (i.i.d. channel evolution) and M = 1, then the PI* rule is
maximally stable and fluid-optimal under the time-average criterion and arrival processes that for each
class are i.i.d. with finite second moment.

We believe that this claim of Ayesta et al. (2011) can be extended to the case of Markovian channel
evolution and M ≥ 1, but becomes technically much more involved. We therefore formulate the following
conjecture.

Conjecture 1. The PI* rule is maximally stable and fluid-optimal under the time-average criterion and
arrival processes that for each class are i.i.d. with finite second moment. Moreover, the stability region
is the same as in the i.i.d. channel evolution case.

Whittle (1988) conjectured for the restless bandit problem (with a fixed population of K bandits)
that the index rule derived by the Lagrangian relaxation becomes asymptotically optimal as both the
capacity M and the number of bandits K grow to a fixed proportion. This conjecture was proved true
under certain conditions that are hard to check in Weber and Weiss (1990). As we have mentioned
earlier, our model without arrivals is a special case of the restless bandit problem. Although it is not
clear whether these sufficient conditions are obeyed by our model, and although we admit arrivals of
new jobs to the system, we believe that the original conjecture of Whittle (1988) may remain valid with
a slight modification. Such a result would be of special importance, because it guarantees scalability of
the PI* rule.

Conjecture 2. If both the capacity M and the arrival rates of each class grow in fixed proportion, then
the PI* rule approaches optimality under arrival processes that for each class are i.i.d. with finite second
moment.

6 Experimental Study

In order to study performance of the PI* rule in systems not covered by theoretical results stated in
the previous section, we consider a two-class system with Bernoulli user arrivals and single-user capacity
M = 1. Every arriving job belongs to one of K = 2 classes which may differ in all the parameters as
in the previous discussion. A new job arrives to the system with probability λ per slot. Given a user
arrival, she belongs to class k and finds herself in channel condition n with probability λk,n/λ.

In order to keep the state space finite and assure stability of the system (i.e., finiteness of the value
function), we consider a system with blocking of new arrivals of a class whenever there are 10 uncompleted
jobs of the respective class. Nevertheless, for comparison we also report the value of the parameter

%∗ :=
λ1,B + λ1,G

µ1,G
+
λ2,B + λ2,G

µ2,G
,

which was shown in Ayesta et al. (2011) to characterize the stability region in (non-blocking) systems
with i.i.d. channel evolution by %∗ < 1.

We have performed experiments in many scenarios and selected six, which we believe illustrate typical
pattern. The parameters set in the six scenarios reported here are summarized in Table 1. We have
compared PI*, PI-SS (a variant of PI* in which q∗k,B,G is replaced by the steady-state probability qSS

k,G),
and PI1 (a variant of PI* in which q∗k,B,G is replaced by the one-slot probability qk,B,G), both with cµ
tie-breaking and with randomized tie-breaking in condition G. Moreover, we have included the SB rule
(Bonald, 2004b) modified to use cµ tie-breaking.

Scenario 1. Varying both q1BG and q1GB for class 1 means changing the character of its channel from
slow-fading to fast-fading. We keep %∗ = 0.5. We can see no significant effect of such a change in the
channel on performance. More interestingly, all rules with cµ tie-breaking are optimal (except for the
first point), while all the rules with randomized tie-breaking perform significantly worse with relative
suboptimality gap between 5% and 8%.
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Parameters µ1B µ1G µ2B µ2G q1BG q1GG q2BG q2GG λ1B = λ1G λ2B = λ2G c1 = c2

Scenario 1 0.001 0.01 0.1 0.2 [0.1, 0.9] 1− q1BG 0.1 0.4 0.002 0.01 1
Scenario 2 [0.05, 0.25] 1.00 0.0002 0.1 0.99999 0.00001 0.01 0.01 0.1 0.3 1
Scenario 3 0.001 0.01 0.1 0.2 0.2 [0.1, 0.9] 0.1 0.4 0.002 0.01 1
Scenario 4 α0.001 α0.01 0.1 0.2 0.2 0.84 0.1 0.4 0.002 0.01 1
Scenario 5 0.0072 0.009 α0.1 α0.2 0.2 0.8 0.1 0.9 0.002 0.01 1
Scenario 6 0.0072 0.009 α0.1 α0.2 0.2 0.84 0.1 0.4 0.002 0.01 1

Table 1: Parameters set in the experimental study.

Scenario 2. In Scenario 2, jobs of class 1 are completed within one slot if the channel condition is good
(µ1G = 1), but good condition is extremely unlikely. Note that µ1G = 1 implies that PI* is the same as
PI1. We vary µ1B , that is, the quality of transmission in the bad condition. We have %∗ = 6.2, i.e, the
system is overloaded and therefore new arrivals are often blocked. It is important to note that all the
rules achieve excellent performance well below 1%. The jumps in performance are caused by changes in
the priority of service under bad channel conditions in all the PI variants, while SB does not change. It
is interesting to realize that PI-SS with cµ tie-breaking is the best rule, as it is the first in switching,
later followed by PI*. For µ1B ≥ 0.17, SB performs inferior than all the PI variants, even those with
randomized tie-breaking.

Scenario 3. In this scenario we vary the probability for class 1 of maintaining the good channel. We
keep %∗ = 0.5. All the rules with cµ tie-breaking have equivalent performance below 3% (in a subinterval
even optimal), and all the rules with randomized tie-breaking have also equivalent performance, which
varies significantly. In particular, when the probability of maintaining the good channel increases (i.e.,
qqGB in Figure 1(c) approaches zero), randomized rules deteriorate significantly. On the other hand, the
randomized rules outperform slightly the cµ rules in the other extreme.

Scenario 4. Scenario 4 presented in Figure 1(d) shows an effect of decreasing expected job size of
class 1, which is approximated by multiplying the completion probabilities in both channel conditions
by the same factor. Note that %∗ varies from 4.1 to 0.3, and it crosses the stability region at α = 0.44.
Again, all the rules with cµ tie-breaking have equivalent performance and all the rules with randomized
tie-breaking have also equivalent performance, but significantly worse. Except for the “unstable” values
α ≤ 0.44, the cµ rules remain below 1% gap.

Scenarios 5 and 6. These two scenarios show that for small intervals of parameters the suboptimality
gap of the rules with cµ tie-breaking can be large in the “unstable” setting. We emphasize that we have
not observed such an effect in other scenarios, so it is likely to be very uncommon. In Scenario 6, the
same parameter is varied as in Scenario 5, but on an interval 10 times larger. In both scenarios, %∗ starts
with a value above 1 and ends with a value below 1, and it crosses the stability region at α = 0.18.
In Scenario 5, the rules with randomized tie-breaking significantly outperform the other rules, which
achieve the relative suboptimality gap of over 80%. In Scenario 6, the best performing rules are SB and
PI*, which are identical except for interval [0.1,0.3], in which PI* is better, and [0.3,0.6], in which SB is
better. In Scenario 6 we can observe that PI-SS is significantly worse than PI* and SB, achieving the
relative suboptimality gap of about 10% while PI* and SB are below 2%.

7 Conclusion

Based on a solid mathematical ground of Whittle’s and Lagrangian relaxation, we have designed in this
paper a new opportunistic scheduling rule for Markovian time-varying channels. It was by no means
obvious that the index for Markovian channels would be an analogy of the Potential Improvement rule,
derived in Ayesta et al. (2010) for i.i.d. channel evolution. An excellent nearly-optimal performance of
this new PI* rule in computational experiments and comparison to its variants gives insights about the
value of information to be taken into account in order to design schedulers with satisfactory performance
in wireless networks. Moreover, it suggests a relatively simple answer for how the trade-off between the
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Figure 1: Relative suboptimality gap as a function of varying parameters according to Table 1.

short-job prioritization and opportunistic gains (studied also in Sadiq and de Veciana, 2010; Aalto et al.,
2011, for deterministic job sizes) should be resolved in time-varying systems.

Notice that for short jobs, i.e., those satisfying µk,G = 1, PI* is the same as PI1, since q∗k,B,G = qk,B,G.
On the other hand, for long jobs, i.e., those satisfying µk,G ≈ 0, PI* is approximately the same as PI-SS.
We have seen in our experiments that the differences in performance between PI, PI*, PI1 and SB are
negligible as long as the cµ-rule is taken for tie-breaking in the good state. Inferiority of SB was observed
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only in systems with short jobs (Scenario 2), but otherwise the comparable performance of SB is rather
surprising. It seems that the effect of the tie-breaking rule in the good channel condition is much more
important than the effect of the choice under the bad conditions. However, it is not clear whether such
an excellent performance of SB would propagate to systems with more than two channel conditions. In
that case the importance of priorities in the non-best conditions should dramatically increase.

We believe that the basic principles of giving an absolute priority to users in the best channel condi-
tion, and comparing the others according to a ratio of their current transmission rate and the potential
improvement in their transmission rate extend also to systems with a more complex functionality. Those
include especially non-geometric job sizes and partially observable channel conditions. Note that in the
case of general job sizes, but non-varying channels, our approach leads to the Gittins index rule, which
is optimal (Gittins, 1989). Theoretical analysis of indexability in time-varying setting may, however, be
prohibitively complicated in order to derive closed-form index values or fast implementable algorithms
for their computation.
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A Auxiliary Material and Proofs

A.1 Proof of Lemma 1

Let ∆ := εsk,n denote the amount of bits transferred in one slot in channel condition n. Then the
probability that a user leaves the system if served in channel condition n is P[b ≤ Bk ≤ b + ∆|Bk >
b] = P[Bk ≤ ∆], which does not depend on the attained service b due to the memoryless property of
geometric distribution.

If E[Bk] = 1/(1 − α), then given that the job size is at least b bits, it is at least b + 1 bits with
probability α = 1−1/E[Bk]. Therefore, P[Bk > ∆] = α∆, so P[Bk ≤ ∆] = 1−α∆ = 1− (1−1/E[Bk])∆.
Moreover, P[Bk ≤ ∆]→ ∆/E[Bk] as ∆/E[Bk]→ 0.

A.2 Work-Reward Analysis

In order to prove Proposition 1 and Proposition 2, we will focus on the case β < 1, i.e., the problem
under the discounted criterion. Problem (2) is a standard stationary MDP problem, for which it is
well known that there is an optimal policy which is deterministic (i.e., non-randomized), stationary (i.e.,
Markovian), and independent of the initial state (Puterman, 2005, Chapter 6). In particular, this implies
that there exists an optimal policy which only depends on the user-k state-process Xk(·). Indeed, policy
π̃k ∈ ΠX,ak

that depends on the joint state-process X(·) can be seen as a randomized policy, since the
user-l state-process Xl(·) for l 6= k is not influenced by the user-k action-process ak(·) prescribed by π̃k.

Therefore, in order to find an optimal policy to problem (2) it is enough to concentrate on stationary
policies πk ∈ ΠXk,ak

. Every such policy can be represented in terms of a serving set S ⊆ Nk, which
prescribes to allocate the base station’s service (i.e., to serve) whenever the user is in state n ∈ S and
not to serve whenever the user is in state n /∈ S. Thus, an optimal policy to problem (2) can be obtained
by solving

max
S⊆Nk

BS0
[
R
ak(·)
k,Xk(·)

]
− ν BS0

[
W

ak(·)
k,Xk(·)

]
. (8)

Notice that (8) is a parametric (bi-objective) optimization problem and every policy (i.e., serving
set) S is associated with a bi-dimensional point BS0

[
W

ak(·)
k,Xk(·)

]
,BS0

[
R
ak(·)
k,Xk(·)

]
. If depicted in a plane with

works on the x-axis and rewards on the y-axis, then the optimal policies to (8) lie on the upper boundary
of such a region, since the parameter ν gives the slope of the supporting hyperplane (a line in this case)
defining an optimum point (i.e., an optimal policy).

We will next analyze scaled quantities BS0
[
R
ak(·)
k,Xk(·)

]
/(1 − β), writing briefly RSn if the initial state

Xk(0) = n ∈ Nk. Analogously, we will write briefly WSn and the value function under policy S we denote
by VSn := RSn − νWSn . These scaled quantities correspond to the usual quantities under the β-discounted
criterion. Optimality of threshold policies and indexability under the time-average criterion is obtained
in the limit β → 1. In the rest of this section we will omit the user subscript k ≤ K − 1 to simplify the
notation.

A.3 Proof of Proposition 1

Let us denote the optimal value function by V∗n. An inspection of the Bellman equation leads to the
following lemma, which establishes optimality of threshold policies in Proposition 1.

Lemma 2.

(i) Suppose that ν > 0 holds. Then, if it is optimal to serve in state 0 (resp. B), then it is optimal to
serve in state B (resp. G).

(ii) Suppose that ν ≤ 0. Then it is optimal to serve in any state n ∈ N .

Proof. The Bellman equation for state n ∈ N is V∗n = max
a∈A

{
Ran − νW a

n + β
∑
m∈N

pan,mV∗m

}
. After
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plugging the definitions of the action-dependent parameters for state n ∈ N ′, we obtain

V∗n = max {−c(1− µn)− ν + β [(1− µn)qn,BV∗B + (1− µn)qn,GV∗G + µnV∗0] ;
−c+ β [qn,BV∗B + qn,GV∗G]}
= −c+ β [qn,BV∗B + qn,GV∗G] + max {−ν + µn (c+ βV∗0 − βqn,BV∗B − βqn,GV∗G) ; 0} ,

where the first term in the curly brackets corresponds to action 1 and the second one to action 0. Serving
(i.e., action 1) is optimal in state n ∈ N ′, if the first term is greater than or equal to the second term.

Analogously for state 0, using the Bellman equation it is straightforward to obtain that action 1 is
optimal in state 0 iff ν ≤ 0 and action 0 is optimal in state 0 iff ν ≥ 0, so

V∗0 = max {−ν + βV∗0 ;βV∗0} =

−
ν

1− β
, if ν ≤ 0,

0, if ν ≥ 0.

(i) If ν > 0, we have V∗0 = 0, and so we can simplify the Bellman equation for states n ∈ N ′ to

V∗n = −c+ β [qn,BV∗B + qn,GV∗G] + max {−ν + µn (c− βqn,BV∗B − βqn,GV∗G) ; 0} .

Next we show that if it is optimal to serve in state B, then it is optimal to serve in state G. In
order to obtain a contradiction, let us assume that it is optimal to serve at state B, and at the
same time it is not optimal to serve at state G. Then the Bellman equations reduce to

V∗B = −c+ β [(1− qB,G)V∗B + qB,GV∗G]− ν + µB (c− β(1− qB,G)V∗B − βqB,GV∗G) ,
V∗G = −c+ β [(1− qG,G)V∗B + qG,GV∗G] ,

which can be rewritten in the form of a system of two equations with two unknowns

(1− β(1− µB)(1− qB,G)) V∗B − β(1− µB)qB,GV∗G = −c(1− µB)− ν,
−β(1− qG,G)V∗B + (1− βqG,G) V∗G = −c.

In order to solve this system of linear equations, we continue by defining the following weighted
harmonic mean,

qz
B,G :=

1
1− β
qB,G

+
β

qSS
G

, (9)

where qSS
G is defined in (4). Then the solution to the above system of equations is

V∗B = −
c(1− µB) + ν(1− qz

B,G)
(1− β)(1− µB) + µB(1− qz

B,G)
, (10)

V∗G = −
c(1− µB) + cµB

qz
B,G

βqB,G
+ βν(1− qG,G) qz

B,G

βqB,G

(1− β)(1− µB) + µB(1− qz
B,G)

. (11)

It is easy to check that the denominator in these two expressions is strictly positive, which is useful
in the following manipulations.

Since it is optimal to serve at state B, we have that

−ν + µB (c− β(1− qB,G)V∗B − βqB,GV∗G) ≥ 0,

which is a contradiction if µB = 0. In the remaining case, after plugging (10) and (11), it can be
shown in a straightforward way to be equivalent to ν(1− β) ≤ cµB . On the other hand, since it is
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not optimal to serve at state G, we have that

−ν + µG (c− β(1− qG,G)V∗B − βqG,GV∗G) < 0,

which, after plugging (10) and (11), can be shown to be equivalent to

ν

{
(1− β)(1− µB) + (µB − µG)(1− qz

B,G) + (1− β)µG
qz
B,G

βqB,G

}
> cµG(1− µB) + cµGµB

qz
B,G

βqB,G
.

(12)

Using µG ≥ µB and cµB ≥ ν(1−β) (that we have obtained from the first inequality), we have that

cµG(1− µB) ≥ ν(1− β)(1− µB), cµGµB
qz
B,G

βqB,G
≥ ν(1− β)µG

qz
B,G

βqB,G
,

which combining with (12) implies

ν

{
(1− β)(1− µB) + (µB − µG)(1− qz

B,G) + (1− β)µG
qz
B,G

βqB,G

}

> ν

{
(1− β)(1− µB) + (1− β)µG

qz
B,G

βqB,G

}
,

which is equivalent to

(µB − µG)(1− qz
B,G) < 0.

This is a contradiction with µG ≥ µB , since qz
B,G ≤ max{qB,G, qSS

G } ≤ 1 due to the properties of
weighted harmonic mean.

Therefore the statement holds under ν > 0 for all n ∈ N \ {G}.

(ii) If ν ≤ 0, then serving is optimal in state 0. Notice that the one-period net reward Ran−νW a
n ≤ −ν

for any state n ∈ N and any action a ∈ A. Hence V∗n ≤ −ν/(1 − β) = V∗0 for any n ∈ N ′, and
therefore (using c > 0) also c + βV∗0 − βqn,BV∗B − βqn,GV∗G > 0, and finally, −ν + µn(c + βV∗0 −
βqn,BV∗B − βqn,GV∗G) ≥ 0 for any state n ∈ N ′. That is, serving is optimal in any state n ∈ N .

A.4 Proof of Proposition 2

In order to prove the existence of optimal index values νn in terms of properties (i) and (ii) of Proposi-
tion 2, we will establish validity of a sufficient condition called LP-indexability introduced in (Niño-Mora,
2007a, Definition 5.3), which will be stated after defining some necessary concepts. The analysis in the
following paragraphs also shows how to evaluate such index values provided they exist. An immediate
result are the balance equations given in the following lemma.

Lemma 3. For all states n ∈ N we have WNn = 1/(1− β), and under any policy 0 /∈ S we have

RSn =


−c(1− µn) + (1− µn)β

∑
m∈N ′

qn,mRSm, if 0 6= n ∈ S,

−c+ β
∑
m∈N ′

qn,mRSm, if 0 6= n /∈ S,

0, if n = 0.
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WSn =


1 + (1− µn)β

∑
m∈N ′

qn,mWSm, if 0 6= n ∈ S,

β
∑
m∈N ′

qn,mWSm, if 0 6= n /∈ S,

0, if n = 0.

Proof. Directly from the definition of β-average reward and work, respectively, we have

RSn = Rn∈Sn + β
∑
m∈N

pn∈Sn,mRSm, WSn = Wn∈S
n + β

∑
m∈N

pn∈Sn,mWSm,

where n ∈ S equals 1 if true and 0 otherwise. Substituting the values of Rn∈Sn , Wn∈S
n and pn∈Sn,m given in

the definition of the job-channel-user triple, and simplifying, results in the above characterization.

If index value νn for n ∈ N ′ with the desired properties (i) and (ii) (and index value ν0 for n = 0 with
the desired properties (iii) and (iv)) stated in Proposition 2 exists, then both serving and not serving is
optimal if ν = νn. This means that there is a policy, say S∗, such that both including state n in S∗ and
not including it lead to the same objective value, i.e.,

RS
∗∪{n}

n − νnWS
∗∪{n}

n = RS
∗\{n}

n − νnWS
∗\{n}

n .

A straightforward consequence of this and of the balance equation is that changing the action only in
the initial period must also lead to the same objective values, i.e.,

R〈0,S
∗〉

n − νnW〈0,S
∗〉

n = R〈1,S
∗〉

n − νnW〈1,S
∗〉

n ,

where policy 〈a,S∗〉 is the policy that employs action a in the initial period and then proceeds according
to S∗. Then, whenever W〈1,S

∗〉
n −W〈0,S

∗〉
n 6= 0, we have

νn =
R〈1,S

∗〉
n − R〈0,S

∗〉
n

W〈1,S
∗〉

n −W〈0,S
∗〉

n

, (13)

We will therefore study νn under all policies S, defined as

νSn :=
R〈1,S〉n − R〈0,S〉n

W〈1,S〉n −W〈0,S〉n

. (14)

From the balance equations we can obtain the following characterization of these quantities.

Lemma 4. For any state n ∈ N ′ under any policy 0 /∈ S we have

νSn = µn

c− β
∑
m∈N ′

qn,mRSm

1− µnβ
∑
m∈N ′

qn,mWSm
, νS0 = 0. (15)

Proof. Using the characterization of R〈a,S〉n for a ∈ A from Lemma 3, we obtain that

R〈1,S〉n − R〈0,S〉n = µn

(
c− β

∑
m∈N ′

qn,mRSm

)
.

Similarly, we obtain that

W〈1,S〉n −W〈0,S〉n = 1− µnβ
∑
m∈N ′

qn,mWSm. (16)

Then, the definition in (14) yields the stated characterization. Finally, νS0 = 0 is obtained trivially.
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Since our objective is to find the optimal index values νn in terms of properties (i) and (ii) of
Proposition 2, we postulate that

For all n ∈ N : νn = νSN−n
n for SN−n := {m ∈ N : m > n}. (17)

We will verify this postulate using a sufficient condition LP-indexability (Niño-Mora, 2007a, Definition
5.3), which in our problem can be simplified to the following.

Definition 1. Problem (2) is LP-indexable with index values νn given in (17), if the following conditions
hold:

(i) W〈1,∅〉n −W〈0,∅〉n > 0 and W〈1,N〉n −W〈0,N〉n > 0 for all n ∈ N ;

(ii) W〈1,SN−n〉
n −W〈0,SN−n〉

n > 0 and W〈1,SN−n〉
n+1 −W〈0,SN−n〉

n+1 > 0 for each n ∈ N \ {N};

(iii) For every real-valued ν there exists n ∈ N ∪ {−1} such that the serving set SN−n is optimal.

We will first need to characterize the above quantities under SN−n for any n ∈ N . Let us denote by

WSN−n

l := β
∑
m∈N ′

ql,mWSN−n
m .

According to the balance equations in Lemma 3, we have

WSN−n

l = 1 + (1− µl)W
SN−n

l , if l ∈ SN−n,

WSN−n

l = WSN−n

l , if l /∈ SN−n.

So, we need to solve the following system of linear equations:

WSN−n

j − β
∑

l∈SN−n

qj,l(1− µl)W
SN−n

l − β
∑

l/∈SN−n

qj,lW
SN−n

l = β
∑

l∈SN−n

qj,l, for all j ∈ N ′. (18)

Lemma 5. For the Gilbert-Elliot model, (18) has the following solution:

(i) for n = 2, so that the policy is SN−n = ∅, we have

WSN−n

l = 0 for all l ∈ N ′.

(ii) for n = 1, so that the policy is SN−n = {G}, we have

WSN−n

B =
β

1− β
q∗B,G

+ βµG

, WSN−n

G =
(1− β)βqG,G + β2qB,G

qB,G

{
1− β
q∗B,G

+ βµG

} .

(iii) for n = 0, so that the policy is SN−n = {B,G}, we have

WSN−n

B =

β

q∗B,G
1− β(1− µB)

q∗B,G
+ β(µG − µB)

.

Analogously for rewards we need to solve the following system:

RSN−n

j − β
∑

l∈SN−n

qj,l(1− µl)R
SN−n

l − β
∑

l/∈SN−n

qj,lR
SN−n

l = −βc+ βc
∑

l∈SN−n

qj,lµl, for all j ∈ N ′.

(19)
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Lemma 6. For the Gilbert-Elliot model, (19) has the following solution:

(i) for n = 2, so that the policy is SN−n = ∅, we have

RSN−n

l =
−βc
1− β

for all l ∈ N ′.

(ii) for n = 1, so that the policy is SN−n = {G}, we have

RSN−n

B =

−βc

(
1

q∗B,G
− µG

)
1− β
q∗B,G

+ βµG

, RSN−n

G =

−βc

(
qB,G
q∗B,G

− qG,GµG

)

qB,G

{
1− β
q∗B,G

+ βµG

} .

After plugging the expressions from the last two lemmas into (15), we have the following characteri-
zation.

Lemma 7. For the Gilbert-Elliot model, we have

ν∅G =
cµG

1− β
, ν∅B =

cµB
1− β

, (20)

ν
{G}
G =

cµG
1− β

, ν
{G}
B =

cµB
1− β + βq∗B,G(µG − µB)

. (21)

Next we establish that the LP-indexability holds.

Lemma 8. For the Gilbert-Elliot model, problem (2) is LP-indexable with index values νn given in (17).

Proof.

(i) It is straightforward to obtain from Lemma 3 that W〈1,∅〉n −W〈0,∅〉n = W〈1,N〉n −W〈0,N〉n = 1 for all
n ∈ N .

(ii) We need to prove positivity of four differences. First, we have W〈1,{B,G}〉0 −W〈0,{B,G}〉0 = 1 > 0,
because state 0 is absorbing, so action 0 will be applied all the time under policy {B,G}. Further,
according to (16) the remaining three inequalities are equivalent to proving µmWSN−n

m < 1 for
(n,m) ∈ {(0, B), (B,B), (B,G)}. Using Lemma 5 we have

µBWSN−0

B =
βµB

(1− β) + βq∗B,G(µG − µB) + βµB
< 1, µBWSN−1

B =
βµB

1− β
q∗B,G

+ βµG

< 1,

where we have used properties µG ≥ µB and β < 1.

Finally, case (n,m) = (B,G) requires expanding q∗B,G and becomes more tedious, but otherwise it

is straightforward to prove that µGWSN−1

G < 1.

(iii) This is established in Proposition 1.

Notice that expressions (5) are obtained from (20) by Definition 1 using νn = ν
SN−n
n . Therefore, since

LP-indexability is a sufficient condition for the properties (i) and (ii) (and (iii) and (iv)) of Proposition 2,
we conclude its proof.
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