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Abstract—BitTorrent is one of the most popular application
in the current Internet. However, we still have little knowledge
about the topology of real BitTorrent swarms and how the
traffic is actually exchanged among peers. This paper addresses
fundamental questions regarding the topology of live BitTorrent
swarms. For this purpose we have collected the evolution of the
graph topology of 250 real torrents from its birth during a period
of 15 days. Using this dataset we first demonstrate that real
BitTorrent swarms are neither random graphs nor small world
networks. Furthermore, we will see how some factors such as the
torrent popularity affect the swarm topology. Secondly, the paper
proposes a novel methodology in order to infer the clustered
peers in real BitTorrent swarms, something that was not possible
so far. Finally, we dedicate special effort to demonstrate that
current BitTorrent swarms are experiencing a marked locality
phenomenon at the overlay construction level (or connectivity
graph). This locality effect is even more pronounced when we
consider the exchange traffic relationships between peers. This
suggests that an important portion of the BitTorrent traffic
is currently confined within the ISPs. This opens a discussion
regarding the relative gain of the locality solution proposed so
far.

I. INTRODUCTION

BitTorrent is one of the most used application in the current
Internet and is responsible for an important portion of the
upstream and downstream traffic as revealed by last Sandvine
report from Fall 2010 [13]. This has attracted the attention of
the research community that has thoroughly investigated the
BitTorrent protocol and ecosystem. In spite of this big effort,
we still have some gaps in the knowledge of some aspects
of BitTorrent. For instance, we do not know much regarding
the topological structure of real BitTorrent swarms. In this
paper we address this issue. Some previous papers [1], [6],
[14] have analysed the structure of BitTorrent swarms through
simulation and controlled environments considering a reduced
number of swarms. Although these studies help to obtain
initial results regarding the composition of BitTorrent swarms,
they cannot consider real effects (e.g. network congestion,
ISPs policies, etc) that may severely affect the topology of
live BitTorrent swarm. In this paper, instead, we rely on
measurement techniques to infer the graph structure of real
BitTorrent swarms. We collect data from 250 real swarms
from its birth during a period of 15 days. Specifically, our
measurement tool uses the Peer Exchange (PEX) extension of
the BitTorrent protocol in order to collect the routing table (i.e.
list of neighbours) of the peers. Using this technique we are

able to obtain the routing table of 150k peers along the time.
With this dataset we aim to answer the following critical but
still unanswered questions: (i) Does the connectivity graph
of live BitTorrent correspond to a random graph? Previous
emulation studies have contradictory conclusions. Dale et
al. [6] conclude that BitTorrent swarms are random graphs
whereas Al-Hamra et al. [1] state that they are not. Our results
demonstrate that BitTorrent swarms are neither random graphs
nor small-worlds. (ii) Does the popularity of the content
(i.e. the size of the swarm) affect the swarm topology? Al-
Hamra et al. [1] is the only work addressing this question.
The authors conclude that the size of the swarm does not
impact the swarm topology in their controlled experiments.
Rather, we will demonstrate that in live swarms the size has
a clear impact on the graph structure. (iii) How dynamic
is the graph structure of the swarms? To the best of our
knowledge no previous study has addressed this question.
Our results demonstrate that although the peers’ routing table
are continuously changing, this is, there is a high level of
microscopic dynamicity, the macroscopic parameters, such as
the clustering coefficient or characteristic path length, remain
stable leading to a low level of macroscopic dynamicity.
In this paper we also study the existence of a clustering

phenomenon in BitTorrent swarms in the wild. Again, we
found in the literature contradictory results based on emulation
and simulation experiments considering few torrents. On the
one hand Legout et al. [10] report the existence of a cluster-
ing phenomenon based on their emulation experiments. The
authors suggest that peers with similar speed cluster together.
On the other hand, Dale et al. [6] conclude the absence of
clustering phenomenon (this is coherent with their statement
of BitTorrent swarms being random graphs). Contrary to the
simulation and emulation experiments used by previous works,
we look at the phenomenon of clustering using data collected
from real swarms. First, we demonstrate that the clustering
coefficient of BitTorrent swarms is typically higher than that of
a random graph of the same size, thus there exists a clustering
phenomenon so that we further analyse this issue. BitTorrent
clients use a set of different algorithms such as the unchoke
algorithm, the optimistic connect (used in leecher state) and
the optimistic disconnect (used in seeder state) that are fun-
damental to understand the clustering phenomenon. Based on
these algorithms a peer would only keep in its routing table
those nodes with which it interacts (i.e. exchanges traffic)
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systematically. We name these nodes stable neighbours. There-
fore, in BitTorrent the clustering phenomenon is tied to the
exchange of traffic between peers. We have analysed the rout-
ing table (i.e. neighbourhood) of 50k peers from our dataset in
its leecher and seeder state. We observe a high percentage and
absolute number of stable peers in the routing table of the peer
during the leecher state whereas this percentage and absolute
number gets dramatically reduced during the seeder state.
This suggests that a peer clusters with other peers during the
leecher state, however, current implementation of BitTorrent
clients leads to not clustering during the seeder state to avoid
the leechers with high download capacity getting all seeders
upload bandwidth.
On the other side, some studies [2], [9] have highlighted

that the lack of underlay topology awareness of peer-to-
peer applications (p2p) is unnecessarily pushing an important
amount of traffic to the Internet Service Providers (ISPs)
transit links, producing an increment of their operational costs.
BitTorrent, due to the huge amount of data that generates, has
received an special attention and several solutions to confine
BitTorrent traffic within the ISP has been proposed [3], [15].
We refer to them as BitTorrent Locality solutions. Furthermore,
some previous studies have analysed the expected performance
of these Locality solutions [5], [12] assuming that current
BitTorrent swarms responds to a random graph structure.
However, to the best of the authors knowledge there is no work
that has studied whether a locality-biased composition exists
or not in the current BitTorrent swarms. Then, in this paper we
first study if the connectivity graph of live BitTorrent swarms
shows any biased composition towards ISP-based locality or
country-based locality. Secondly, we focus on studying the
locality effect at the cluster level. For this purpose, for each
one of the 50k peers considered in the clustering analysis,
we analyse whether their stable neighbourhood presents an
ISP or country biased composition. Our results reveal that
there is a clear trend towards ISP-locality at both connectivity
and cluster level in current BitTorrent Swarms. Therefore, the
ISPs’ policies (e.g. throttling policies) [8], the spread of new
implementation of BitTorrent clients that favour the creation of
locality-biased ISPs [3], [15] and some network phenomenon
(e.g. congestion) lead to have ISP locality biased BitTorrent
swarms.
In short, the main contributions of this paper are:
• This paper presents the first large scale study based on
real data (250 torrents) to understand the overlay structure
of live BitTorrent swarms.

• Live BitTorrent swarms are neither random graphs nor
small worlds. However, the size of the swarm has a clear
impact on its topology structure: the larger the swarm is
the more different its structure is from a random graph.

• The paper presents a complete study of the dynamicity of
the BitTorrent live swarm topology along the time. Churn
effect as well as the algorithm implemented by the current
BitTorrent clients makes the peers to continuously change
an important portion of their neighbourhood. Therefore,
BitTorrent swarms show a high microscopic dynamicity.

However, when we analyse the macroscopic topological
metrics, i.e. clustering coefficient and characteristic path
length, they remain stable, thus resulting in a low macro-
scopic dynamicity.

• The obtained results demonstrate that peers tend to cluster
with other peers during the leecher state, however this
tendency disappears when the peer becomes a seeder.

• The current BitTorrent swarms show a marked effect
towards an ISP-biased composition. This is, peers include
in their neighbourhoods a larger number of neighbours
from its own ISP than expected in a random selection
process. Furthermore, this locality effect appears also at
the cluster level, since the set of stable neighbours are
also biased towards being from the same ISP of the peer.

The rest of the paper is organized as follows. Section II
describes our measurement infrastructure and methodology as
well as the dataset used along the paper. Section III presents
our fundamental findings regarding the overlay structure of
live BitTorrent swarms. Afterwards, Section IV discusses the
clustering phenomenon existing in current BitTorrent swarms.
Section V focuses on analyzing the locality-biased com-
position of current BitTorrent swarms. Finally, Section VI
concludes the paper.

II. MEASUREMENT METHODOLOGY

The aim of our measurement study is to retrieve the graph
topology of BitTorrent swarms. For this purpose we collect
the routing table (i.e. neighbourhood list) of each peer in the
swarm by using the Peer Exchange (PEX) extension of BitTor-
rent protocol. In the rest of the section we provide a detailed
description of both, the used measurement infrastructure and
methodology.

A. Measurement Infrastructure
Our measurement infrastructure is formed by 3 physical

machines including 4 virtual machines (VMs) each. In total we
have 12 VMs, each one with a single public IP address. One
of the VMs acts as Master whereas the other 11 are Slaves.
One the one hand, the Master is responsible for learning

new torrents from a BitTorrent Portal and contacting the
tracker that manages the swarm associated to each torrent.
Furthermore, the Master coordinates to which IP addresses
(i.e. peers) each slave has to connect at any moment.
On the other hand, each Slave has a list of IP addresses

(i.e. peers). The Slave tries to connect to each one of these
peers and to retrieve the routing table of the peer among other
information.

B. Measurement Methodology
The methodology of our measurments is similar to one

presented in [4]. In order to learn new torrents we decided
to use The Pirate Bay portal. This is the most important
BitTorrent portal according to Alexa rank1 and some research
studies [16]. The Pirate Bay offers an RSS service where each

1http://www.alexa.com/topsites
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new torrent is announced as soon as it is uploaded to the portal.
Our Master is subscribed to this RSS service so that it is able
to learn from a new torrent just after its birth. This guarantees
that we will be able to crawl the full lifespan of a given torrent.
The RSS service provides the Master with the .torrent file that
includes the IP address of the tracker managing the swarm
associated to the torrent along with other information not
relevant to this paper. The Master, then, periodically queries
the tracker with the maximum frequency allowed by this one
(around 10 to 15 minutes) to avoid being blacklisted by the
tracker. Each answer of the tracker includes: the number of
seeders (i.e. peers with a complete copy of the file), the
number of leechers (i.e. peers with an incomplete copy of
the file) and a random set (typically 200) of IP addresses of
peers participating in the swarm. Furthermore, the Master is
responsible for coordinating the Slaves activity. The Master
learns the IP addresses of peers within a swarm from the
tracker and also from the Slaves as we will see later. The
Master has to schedule the connection of the different Slaves
to a given peer: the Slaves contribute no chunks to the other
peers, thus, if a Slave connects few consecutive times to a
given peer, the latter blocks the former. In order to avoid
this, the Master schedules the connection to each individual
learnt peer in a round robin fashion so that a given Slave only
connects to the same peer once every 11 connections (around
2 hours). This prevents that any peer blacklists our Slaves.
Each Slave receives a list of IP addresses (i.e. peers) to

connect to. The Slave connects to each of them that is not
behind a NAT, and for those peers supporting the Peer Ex-
change extension (PEX)2 the Slave retrieves their routing table
(the list of IP addresses to which given peer is connected).
It is worth noting that the most important BitTorrent clients
such as uTorrent and Vuze support PEX, thus we are able
to retrieve the routing table for almost every reachable peer.
Furthermore, each Slave informs the Master regarding the IP
addresses obtained through PEX. If any of these IP addresses
is new, the Master adds it to the list of IP addresses to crawl.
As mentioned before, there are peers that are behind a NAT

and are not reachable, therefore if we fail to connect to a
given IP address 5 times we declare this peer as unreachable.
Furthermore, due to churn phenomenon some nodes join
and leave the swarm dynamically, so a reachable node may
become unreachable, thus after 5 times failing to connect to a
previously reachable node we consider that it left the swarm.

C. Dataset description
We have applied the described measurement methodology

to 250 consecutively published torrents, learnt by RSS from
the Pirate Bay portal between 20th December 2010 until 4th
January 2011. From this set of torrents we were able to learn
the routing tables of 150k peers. It is worth to note that we
collect the routing table evolution for a given peer since we
periodically connect to it as explained above. Furthermore we

2PEX is an extension to the BitTorrent protocols that allow the peers
supporting it to exchange their routing tables. This reduces the load from the
tracker since peers are able to learn other peers without asking the tracker.

map the peers’ IP addresses to their country and ISP using the
MaxMind Database [11].

III. BITTORRENT LIVE SWARMS GRAPH TOPOLOGY
In this Section we analyse the main characteristic of the

Connectivity Graph of real BitTorrent swarms and answer
important questions such as Are BitTorrent Swarms random
graphs or small world topologies? Does the size of the swarm
impact the overlay topology? What is the level of dynamicity
on the graph structure of BitTorrent swarms? To the best of
the authors knowledge, this is the first study that analyse the
structure of BitTorrent swarms in the wild.

A. Methodology
We represent a swarm as a collection of vertices (V ) and

edges (E). Each peer within the swarm is represented as
a vertex, thus peer i is represented by vi. Therefore V =
[v1, v2, ..., vn], where n is the torrent population. Furthermore,
eij = 1 if peer i and j are connected and 0 otherwise. Hence,
the Connectivity Graph (or Matrix) is the representation of E
in the form of a matrix. Note that in BitTorrent the connections
are bidirectional, thus the connectivity matrix is symmetric.
For each torrent in our dataset we have collected the

routing tables (i.e. neighbourhood) of each reachable peer3.
We connect to each peer every 10 minutes, hence we are able
to present a swarm’s connectivity matrix evolution along the
time in 10 minutes intervals. Then, we analyse both static and
dynamic properties of the connectivity matrix.
For each snapshot of the connectivity matrix we calculate

the following standard parameters used in graph theory studies:
• Clustering coefficient -C- (also called transitivity mea-
surement) shows the probability that the adjacent vertices
of a given vertex are connected among them.

• Characteristic path length -L- is the average length of the
shortest path between each pair of vertices in the graph.

• Diameter -D- is the shortest path of maximum length
between a pair of nodes in the graph.

Based on these parameters we perform an exhaustive char-
acterisation of the overlay structure of current live BitTorrent
swarms. It is worth noting that due to space constraints and
since the results obtained from the analysis of L and D lead
to the same conclusions, in this paper we only discuss L.

B. Are BitTorrent Swarms Small World or Random Graphs?
The first part of our analysis aims to understand what type

of graph structure, small world or random graph, represents
better a BitTorrent swarm. For this purpose we apply a simple
graph theory analysis. For each torrent in our dataset we
calculate the clustering coefficient (Ck) and characteristic
path length (Lk) for the different snapshots along the torrent
lifespan. Furthermore, we calculate the clustering coefficient
(Cr) and characteristic path length (Lr) for a random graph
with the same number of edges and vertices as the different
snapshots. For each snapshot we also calculate Rc = Ck/Cr

3We can collect the routing tables of those peers that are not behind a NAT
and implement the PEX protocol.
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Fig. 1: Distribution of Ck after X hours from the torrent birth
for the 250 torrents from our dataset
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Fig. 2: Distribution of Lk after X hours from the torrent birth
for the 250 torrents from our dataset
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Fig. 3: Distribution of Rc after X hours from the torrent birth
for the 250 torrents from our dataset
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Fig. 4: Distribution of Rl after X hours from the torrent birth
for the 250 torrents from our dataset

and Rl = Lk/Lr. These two ratios indicate how similar the
actual swarm’s graph is to either a random graph or a small
world network. Those torrents having both Rc and Rl close to
1 are random graphs whereas those torrents having Rl close
to 1 and Rc >> 1 have small world topology.

Figure 1 summarizes the evolution of Ck value for all the
torrents in the dataset. In more detail, it shows Ck for the
first 8 hours of the torrent lifespan with a 2 hours difference
interval and with a step of 24 hours after this point. For each
of these moments of the torrent lifespan we present a boxplot
that indicates the 25%, 50% and 75% percentiles of the Ck

considering all the torrents in the dataset. Figure 2 shows
the same for Lk. The results help us understanding how the
clustering coefficient and the characteristic path length evolve
along the time in real BitTorrent swarms. On the one hand
the clustering coefficient is higher in the birth phase of the
torrent with values around 0.6 and continuously decrease until
reaching stable state, at the 56-80 hours after the torrent birth
phase, where the clustering coefficient is typically around 0.1
for most of the torrents. The explanation to this behaviour is
the following: at the birth of the torrent the swarm size is
small and most of the nodes are connected among them what
leads to a high clustering coefficient. As the time passes, the
torrent population grows, what leads to nodes being connected
to just a portion of other nodes learnt from the tracker or

through PEX. This produces a reduction on the clustering
coefficient. The observed behaviour of the evolution of the
clustering coefficient is consistent with previous emulation-
based results [6], although the absolute values differ.
On the other hand, the characteristic path length is smaller

in the birth of the torrent with a median value of 1.6 and
experiences slightly grow to reach a stable phase after few
(4 to 6) hours where the median of characteristic path length
varies between 1.8 and 1.9. Again, in the birth phase we find a
lower number of nodes that are well connected what leads to
a lower characteristic path length. However, even in the stable
phase the characteristic path length is small, what guarantees
that pieces of the file can easily reach any part of the swarm
in less than 3 hops for the vast majority of the torrents at
any moment. This trend in the characteristic path length is
consistent with previous emulation studies [6].
In order to understand if the actual BitTorrent swarms

respond to a random graph topology we represent in Figure
3 and Figure 4 the evolution of the defined Rc and Rl

ratios along the time for the torrents in our dataset. We use
the same boxplot charts as for the clustering coefficient and
characteristic path length evolution. On the one hand, we
observe that Rc > 1 for most of the cases. This confirms
that the clustering coefficient of the actual BitTorrent swarms
is typically higher than the expected for random graph of the
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Fig. 5: Median value of the different graph metrics (Ck,Lk,Rc,Rl) per torrent vs torrent size

same size. On the other hand the median for all torrents of
Rl < 1 at any moment of the torrent lifespan. Therefore,
in actual BitTorrent swarms we expect to have shorter paths
between nodes than in random graphs of the same size. These
observations are contradictory to previous studies [6], where
the authors state that torrent swarms are random graphs. In a
nutshell, the actual BitTorrent swarms show a slightly higher
clustering coefficient and slightly lower characteristic path
length than a random graph, so they are more clustered than
an equivalent random graph. However, they neither fulfil the
properties of small world networks.

C. Does the popularity of the content affects the swarm
topology?
In this subsection we study how the popularity of the

content, i.e. the size of the swarm, affects the overlay topology.
Figure 5 shows the median of clustering coefficient and the

median of characteristic path length as a function of the overall
popularity for the different torrents in our dataset. Moreover
the figure presents trend lines calculated with polynomial
curve fitting for each metric. We observe a clear trend making
larger swarms having a lower clustering coefficient and a
higher path length. This is because, as the torrent size grows
the cluster effect gets reduced due to the high dynamicity of
the connectivity graph reported in the next subsection.
However, the study of the absolute values of these metrics

may lead to wrong conclusions such as the larger the swarm
is the more random it is. Therefore we have also studied the
dependency of Rc and Rl with the size of the torrent. These
results are also shown in Figure 5 together with corresponding
trend lines. We observe an increasing trend of Rc and a
decreasing trend of Rl with the size of the swarm. Therefore,
the trend is the opposite when considering relative metrics
rather than absolute metrics. Finally, the reported trend of Rc

and Rl suggests that the larger the swarm is the less random
typically it is. This is an important observation that has not
been reported before to the best of our knowledge.

D. What is the level of dynamicity on the graph topology of
live BitTorrent swarm?
In this subsection we study how stable is the overlay

topology of BitTorrent swarms. For this purpose we study the
dynamicity of live BitTorrent swarms at two different levels of
dynamicity: (i) microscopic dynamicity, we study how stable

is the neighbourhood of a given peer along the time and (ii)
macroscopic dynamicity, we study the evolution of the graph
characteristics (clustering coefficient and characteristic path
length) of a given torrent along the time.

a) Microscopic Dynamicity: As explained in Section II
we have collected the routing table (i.e. neighbourhood) of
each peer every 10 minutes approximately. In order to quantify
the microscopic dynamicity we have calculated the percentage
of neighbours that appear in two consecutive routing table
snapshots for a given peer. We have perform a fine grain
analysis and considered separately those periods in which the
peer is a leecher and a seeder. The results presented in Figure
6 show that around half of the leechers change 50% of their
neighbours every 10 minutes. This percentage dramatically
increases up to 80% for seeders. This suggests that BitTorrent
swarms suffer from an extremely high microscopic dynamicity
that leads to a continuous change of the overlay graph.
This high microscopic dynamicity is produced on the one
hand by the churn effect (i.e. peers leaving and joining the
swarm) and on the other hand by the combination of the
different algorithm implemented in BitTorrent clients such as
the unchoke algorithm, the optimistic connect algorithm (used
in the leecher phase) and the optimistic disconnect algorithm
(used in the seeder phase).
The unchoking algorithm makes a leecher to select N

(typically 4) neighbours to upload chunks to every 10 seconds.
These peers are then unchoked whereas the rest of the node’s
neighbours are choked and will not receive data from the
peer. The BitTorrent node unchokes the N peers from whom
it received more data in the last 20 seconds. Therefore, the
unchoking algorithm tries to find good neighbours to exchange
traffic with. Furthermore every 30 second the BitTorrent node
performs an optimistic unchoke. This is, it chooses a random
peer from its neighbourhood and uploads data to it. The
optimistic unchoke allows to discover better peers to exchange
traffic with.
Moreover, the most important BitTorrent clients such as

Vuze or uTorrent utilizes the optimistic connect [7] during the
leecher phase. This algorithm drops the connection to those
neighbours that have uploaded few or no data to the leecher
during some time. These neighbours are substituted by new
ones. Therefore, the combination of the unchoking, optimistic
unchoking and optimistic connect algorithms lead the leecher
to identify and drop those peers from which the leecher is not
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obtaining good enough performance, thus contributing to the
high microscopic dynamicity reported before.
On the other hand, BitTorrent seeders apply different un-

choke strategies depending on the implementation. The most
extended strategies are: (i) proportional, the seeder unchokes
every 10 seconds the N leechers that have downloaded more
data from him in the last 20 seconds. (ii) balanced, the
seeder unchokes the peers following a round robin policy.
Furthermore, seeders use the optimistic disconnect algorithm
[7]. Based on this a seeder closes the connection to those peers
to which it has not sent data for a long period of time (around
5 minutes). The combination of these algorithms (specially
the balanced unchoking and the optimistic disconnect) aim
to make the seeder communicating with as many peers as
possible, not necessarily looking for good neighbours as
happened in the leecher state. The result is that seeders show
an extremely high microscopic dynamicity.

b) Macroscopic Dynamicity: Now we focus on under-
standing the evolution of the main graph topological parame-
ters (clustering coefficient and characteristic path length) along
the time. For this purpose Figure 7 presents the mean and the
standard deviation of the clustering coefficient and characteris-
tic path length for each torrent from our dataset (sorted by the
mean of Ck/Lk in ascending order). We observe that for the
major portion of the torrents the standard deviation is relatively
small compared to the mean value for both the clustering
coefficient and the characteristic path length. Therefore, these
torrents present a low macroscopic dynamicity.
In a nutshell, the live BitTorrent swarms show a high

microscopic dynamicity produced by peers varying a large
portion of its neighbourhood even in short periods of time.
However, this does not affect the macroscopic graph structure
of the torrent that remains stable with a low variance in the
showed clustering coefficient and characteristic path length.

IV. BITTORRENT CLUSTERING PHENOMENON IN LIVE
BITTORRENT SWARMS

In the previous section we have performed a thorough
analysis of the static and dynamic characteristics of the overlay
topology of live BitTorrent swarms. We have demonstrated
that current swarms do not have a random graph topology.
This suggests that a clustering phenomenon is taking place
in BitTorrent swarms. In this section we devote our effort
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Fig. 7: Mean an standard deviation of the clustering coefficient
(Ck) and characteristic path length (Lk) for each torrent

to understand this clustering effect. We will present a novel
methodology that allows the identification of the neighbours
with which a peer clusters together. Furthermore we quantify
the cluster effect, this is, we reveal with how many neighbours
a given peer maintains a stable relationship.
To the best of our knowledge this is the first paper that

addresses the clustering phenomenon on BitTorrent swarms in
the wild.

A. Methodology
First of all, we divide the lifespan of a peer in a BitTorrent

swarm in two different phases: leecher and seeder phase. This
is, the time the peer is leecher and seeder respectively.
On the one side, in Section III-D we have described the

main algorithms applied by a BitTorrent leecher: unchoke,
optimistic unchoke and optimistic connect. The objective of
these algorithms is to find a set of good neighbours that
provides the highest possible download rate to the peer and
keep the interaction with them. Specifically, the optimistic
unchoke algorithm tries to find new neighbours that increase
the download rate of the peer; the unchoke algorithm is respon-
sible to interact with the set of good neighbours (i.e. upload
traffic to them) to assure they keep sending data to the peer; the
optimistic connect substitutes the useless peers by new ones
that are potential candidates to interact with. Our hypothesis
is that these algorithms converge to a set of stable neighbours
with which the peer systematically exchange traffic with, thus
leading to a clustering phenomenon happening in BitTorrent
swarms. On the other side, seeders apply different algorithms:
proportional or balanced unchoke and optimistic disconnect.
The final objective of the combination of these algorithms
(specially, in the case of combining balanced unchoke and
optimistic disconnect) is letting the seeder to distribute pieces
of the content homogeneously among the leechers. Therefore,
our hypothesis is that during the seeder phase the peer tends
to have a few (or none) stable neighbours. This suggests that
seeders do not (typically) participate as members of clusters.
We have collected all the routing table snapshots for almost

50k peers from our dataset. For each one of these peers we
have calculated the percentage and absolute number of stable
neighbours. These are neighbours that appear within all the
collected routing tables for a given peer. It is also worth to
note that we distinguish the leecher and the seeder phases since
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Fig. 8: CDF of the percentage of stable neighbours in a peer’s
routing table
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Fig. 9: CDF of the absolute number of stable neighbours in a
peer’s routing table

we expect different results for each of them.

B. Quantifying the clustering phenomenon happening in live
BitTorrent swarms
One the one hand, Figure 8 shows the CDF of the percentage

of stable neighbours for the 50k considered peers. The percent-
age is calculated as the number of stable peers divided by the
median size of the peer’s routing table along its lifespan. Note
that we have differentiated the seeder and the leecher phases.
On the other hand, Figure 9 presents the CDF of the absolute
number of stable neighbours for the 50k considered peers,
again distinguishing between seeder and leecher phases. The
results validate our hypothesis: on the one side, leechers keep
an important percentage (30% in median) of stable neighbours.
These are neighbours with which the peer systematically
exchange traffic and thus clusters together. On the other side,
seeders have much lower percentage of stable peers, in fact
half of the seeders do not have any stable neighbour. However,
there are some seeders that keep an important percentage of
stable neighbours. These seeders participate in small swarms
where all the nodes knows each other (in these cases the stable
neighbours do not reach typically the 100% because of the
churn effect).
If we focus on the absolute number of stable peers, we

observe that, on the one hand, leechers have in median 10
stable neighbours. This value is higher than the typical number
of unchoke slots used by the leecher, i.e. 4. Therefore a
BitTorrent leecher multiplexes its resources (i.e. unchoke slots)
in time in order to attract a larger number of peers to obtain
pieces from. On the other hand, 60% of the seeders presents
a number of stable peers ≤ 1, supporting our hypothesis that
seeders do not (typically) participate in the formed clusters.
In a nutshell, this section has demonstrated that: (i) cluster-

ing is happening in live BitTorrent swarms, (ii) clustering is
linked to the data exchange procedure of BitTorrent and, (iii)
leechers tend to cluster with a number of neighbours typically
larger than the number of unchoke slots whereas seeders do
not (typically) form clusters.

V. DOES LOCALITY HAPPEN IN LIVE BITTORRENT
SWARMS?

The random bootstrapping used in p2p applications, and
more specifically in BitTorrent is unnecessarily pushing a lot

of traffic to the transit links of ISPs increasing the operational
cost of them [2], [9]. Some solutions [3], [15] have been
proposed in order to make a BitTorrent node selects (when
available) peers within its own ISP, thus keeping as much
BitTorrent traffic as possible within the ISP. These techniques
are named Locality techniques.
Furthermore, some other works have studied the perfor-

mance of these Locality techniques [5] [12]. However, to
the best of the author knowledge any of the previous works
have analysed the level of locality that exist in live BitTorrent
swarms. Most of the previous works have assumed that live
BitTorrent swarms are random graphs in which the likelihood
of having a local neighbour from the same ISP in the peer’s
neighbourhood is the same as having a remote neighbour
from a different ISP. However, we have shown in Section IV
that current BitTorrent swarms are not random graphs, so our
hypothesis is that peers’ neighbourhoods are typically biased
towards locality, i.e. the probability of having a local neighbour
is higher than the probability of having a remote neighbour.
Understanding this is critical in order to understand what is
the actual gain that we can obtain from applying the Locality
techniques proposed so far.
Moreover, it is interesting to understand the level of locality

which exists at the traffic exchange level, this is, at the
clustering level. Towards this end we analyse the location
information (ISP and country) of the stable neighbours to see
if there is a locality bias in the selection of those neighbours
with which a peer exchanges traffic.

A. Locality-biased graph topologies
We first study whether live BitTorrent swarms presents an

ISP- or country- biased overlay composition, this is whether
the number of connections between peers from the same ISP
(or country) is higher than expected from a pure random
process. For this purpose we use the following methodology,
that is based on [5]. Lets denote V(T) as all the peers
participating in a torrent swarm T. We also define V(I,T) as a
subset of V(T) which includes all the peers belonging to the
same ISP I and V(C,T) as a subset of V(T) which contains all
the peers belonging to the same country C. On the one hand
we calculate the expected number of local nodes from the
same ISP (Ei) and the same country (Ec) that a given peer
should have under a pure random assignment procedure on
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Fig. 10: Number of local available nodes for peers in unlocalised torrents: (i) absolute and (ii) relative [%]
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Fig. 11: Expected number of local neighbours vs actual number of local neighbours: (i) ISP and (ii) Country locality

each of its routing table snapshots. This is given by the mean
of the Hyper-Geometric distribution4. On the other hand, we
calculate the actual number of local nodes from the same ISP
(I) and from the same country (C) that appears in the peer’s
routing table. We define a simple metric named the Locality
Ratio (LR) that captures whether the neighbourhood of a given
peer is biased towards having more local nodes than expected
from a random bootstrapping process. More specifically, we
define LRI (ISP Locality Ratio) as Ei/I and, LRC (Country
Locality Ratio) as Ec/C. In short, a peer with an LRI > 1
and LRC > 1 has a higher than expected number of peers
in its neighbourhood from its ISP and country respectively.
Then, if this happens for a majority of peers we can conclude
that a Locality effect exists in live BitTorrent swarms.
Prior to present our results we perform a filtering to avoid

biasing the obtained results. It has been reported in [5] the
existence of unlocalisable torrents (snapshots of torrents) for
a given peer. Locality is by definition (almost) impossible
to happen for this peer, since the number of local nodes in
particular torrent snapshot is 0 or very low. Therefore, we
have removed from our dataset all those peers located in
unlocalisable torrents, this is torrents with 0 local peers or
with values of Ei or Ec < 1 (the expected number of local
4The probability of getting x “successes” (i.e., local nodes) when drawing

randomlyW samples from a pool ofN items, out of whichM are “successes”
is given by the HyperGeo(x, N, M, W). In our case, for a given peer N is
represented by the swarm size - 1 (itself), M is represented by the number
of local nodes (from the ISP or Country) -1 (itself) and W is represented by
the peer’s routing table size.

nodes to appear in the routing table of the peer is very low). To
validate our filtering technique we have measured the absolute
and relative (as a percentage of whole population) number of
local nodes for those filtered peers. The results are shown
in Fig 10. For the case of ISP locality we observe that the
filtered peers have (in median) 1.5 local nodes to select as
neighbours. Furthermore, these local nodes represents less than
2% of the torrent population. The results for country locality
are similar. Therefore, we conclude that this filtering technique
is removing peers associated to unlocalisable torrents.
Figure 11 shows Ei vs I and Ec vs C for each peer’s

routing table snapshot. We observe that most of the peers
have a locality-ISP biased neighbourhood, whereas this bias is
slightly lower when we consider the country criteria. Therefore
we can conclude that locality-ISP bias is happening in live
BitTorrent swarms. To the best of the authors knowledge this
is the first study reporting this critical observation.
To gain more insight in this phenomenon we investigate

how much biased are these neighbourhoods towards having
peers from the same ISP or country. Figure 12 presents the
median LRI and LRC of each peer across all its routing table
snapshots.
We can observe that an important portion of peers (45%)

have a surprisingly high LRI over 1.3. This means that they
have 30% more local neighbours from its own ISP than
expected. This percentage gets reduced when looking at the
locality at the country level, where only 27% of peers shows
LRC over 1.3. Therefore, we can conclude that there exists
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Fig. 12: Median locality ratio per peer (in ascended order)

a marked ISP-bias in the peers’ neighbourhood composition.
This suggests that network congestion, ISP throttling policies
[8] and new Locality-biased BitTorrent implementations [3],
[15] are contributing to create ISP-biased overlays. This is an
important conclusion to take into consideration to accurately
evaluate the actual gain that future BitTorrent locality solutions
may achieve. Furthermore, the locality bias is much more
pronounced at the ISP level than at the country level, thus,
ISP-based factors such as ISP policies dominate in order to
create the swarms’ biased overlays.
Let’s now analyse the demographic aspects of the ob-

served locality phenomenon. Our main objective is to discover
whether there are ISPs showing a high level of locality. For this
purpose, for each ISP in our dataset we collect the absolute and
relative (i.e. percentage) number of peers having a high LRI

that we name high locality peers. Specifically, we consider a
peer as high locality peer if it has a LRI > 1.3. Table I shows
the 10 ISPs with the largest number of high locality peers. In
addition, the table reports the percentage of high locality peers
and the median of LRI of the high locality peers for each
one of the 10 ISPs. We observe the presence of major US and
European ISP such as Comcast (US) or Virgin Media (UK) in
the list. This suggests that some major ISPs are implementing
policies in order to bias the overlay construction of the torrents
in which their clients participates. Furthermore, it is worth to
mention the presence of 4 different Indian ISPs in the list.
Therefore, the usage of techniques to reduce the transit traffic
generated by BitTorrent seems to be common among major
Indian ISPs.
We repeat the same analysis at the country level for a peers

with a LRC > 1.3. The results are shown in Table II. India
is the country with the highest number of high locality peers
at the country level. US occupies the second position in the
ranking and we also observe the presence of some European
countries. It is also worth to note that more than 60% of users
from Taiwan are high locality peers. These results are coherent
with the conclusion obtained from the previous ISP analysis.

B. Locality at the traffic exchange level

The BitTorrent Locality-biased solutions proposed so far
[3], [15] aim to bias the overlay structure of the BitTorrent
swarms. However, the final objective of these solutions is
reducing the amount of traffic going to the ISPs transit links.

In the previous subsection we have shown that live BitTor-
rent swarms present an ISP-biased overlay topology, however
we would like to go one step further and understand if there
exists locality at the traffic exchange level. For this purpose
we analyse the location of the stable neighbours for the 50k
studied peers in Section IV. Remind that the stable neighbours
are those node with which the peer systematically exchanges
traffic. Using the same methodology explained in the previous
subsection we calculate the Locality Ratio for each one of the
50k studied peers at both the ISP and Country levels.
Figure 13 shows a box plot showing the distribution of LRI

and LRC at both the overlay construction and the exchange
traffic levels. Specifically, the boxes represents the 25, 50
and 75 percentiles of the LR distribution considering locality
at the ISP and country level. Firstly, we observe that the
exchange traffic level also shows a locality bias that is slightly
more pronounced than at the overlay construction level. The
same effect is observed at the country level. Secondly, this
figure confirms that the locality effect is more marked at the
ISP level than at the country level. The results suggest that
ISP policies (e.g. throttling transit BitTorrent traffic) along
with other secondary effects such as network conditions (e.g.
network congestion) and the presence of new BitTorrent clients
favouring the locality effect lead to confine an important
portion of the exchanged BitTorrent traffic within the ISP, thus
reducing the BitTorrent transit traffic.
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Fig. 13: Distribution of LRI and LRC at overlay construction
and the exchange traffic levels

We have repeated the demographic analysis performed for
the overlay construction level at the traffic exchange level.
The results are presented in the Table III. We conclude that
the observations done at the overlay construction level are
also valid at the exchange traffic level: the presence of several
major ISPs from India and several major US (Comcast) and
European providers (Telecom Italia, Telefonica Espana) among
the top 10 ISPs with a larger number of high locality peers. We
have also performed the analysis at the country level (Table
IV) and obtained similar results at the traffic exchange level
as at the overlay construction level.
In a nutshell, our results confirm that existing locality

policies applied by the ISPs are relatively effective. They lead
to the presence of local nodes in neighbourhood composition,
but what is more important, these policies help to confine the
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ISP Median %

Bharti Broadband 2.22 79.75
NIB (National Internet Backbone) 1.77 42.40
Comcast Cable 1.65 36.80
PTCL Triple Play Project 1.89 55.44
CHTD, Chunghwa Telecom Co., Ltd. 1.89 72.19
Road Runner 1.63 36.27
Mahanagar Telephone Nigam Ltd. 1.97 42.86
RELIANCE COMMUNICATIONS 1.71 38.06
Virgin Media 1.72 38.16
SBC Internet Services 1.74 41.34

TABLE I: ISPs with the highest number of high-locality peers
at the overlay construction level

Country Median %

IN 1.89 25.38
US 1.58 29.51
GB 1.66 32.71
RU 1.80 23.15
PK 1.85 47.40
CA 1.60 31.95
TW 1.85 60.96
PL 1.71 36.94
FR 1.63 37.71
SE 1.58 15.83

TABLE II: Countries with the highest number of high-locality
peers at the overlay construction level

BitTorrent traffic within the ISP.

VI. CONCLUSIONS
This paper presents the first comprehensive study of the

topology structure of live BitTorrent swarms based on large
scale real measurements including data from 250 torrents.
Furthermore, based on the real data collected, the paper
analyses two critical aspects of BitTorrent swarms structure:
the clustering and locality phenomena.
The obtained results demonstrate that the real BitTorrent

swarms are neither random graphs nor small worlds. A more
detailed analysis have revealed that on the one hand the
size affects the swarm structure making large swarms more
clustered. On the other side, the swarm structure remains stable
along the time if we consider macroscopic metrics such as the
clustering coefficient and the characteristic path length. This is
a surprising result due to the high dynamicity observed at the
microscopic level where the peers change in median 50% of
its neighbours every 10 minutes. Furthermore, the paper shows

ISP Median %

NIB (National Internet Backbone) 1.93 51.84
Bharti Broadband 2.53 76.52
CHTD, Chunghwa Telecom Co., Ltd. 1.69 61.11
Comcast Cable 1.63 31.34
Telecom Italia 1.65 30.91
Bredbandsbolaget AB 1.55 45.83
Telefonica de Espana 1.57 25.64
Road Runner 1.77 36.00
PTCL Triple Play Project 2.28 41.18
Mahanagar Telephone Nigam Ltd. 2.47 66.67

TABLE III: ISPs with the highest number of high-locality
peers at the traffic exchange level

Country Median %

IN 1.93 50.83
US 1.70 30.15
PL 1.83 59.32
RU 1.76 20.43
GB 1.83 36.44
SE 1.55 13.00
TW 1.71 48.00
DE 1.56 21.65
ES 1.58 9.94
CN 1.68 30.91

TABLE IV: Countries with the highest number of high-locality
peers at the traffic exchange level

that peers tend to form clusters when they are leechers whereas
the seeders typically do not do it. Finally, our results reveal
the existence of ISP locality biased overlays in BitTorrent
swarms and what is more relevant, even more marked ISP
locality effect at the exchange traffic level. Moreover, we
observe an important presence of Indian and major European
and American ISPs among those showing a higher level of
locality. This locality effect may be produced by different
reasons such as the network conditions (e.g. congestion), the
ISPs policies (e.g throttling) or the implementation of locality-
biased algorithms at both BitTorrent clients and trackers side.
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