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ABSTRACT
In this brief announcement we propose B-Neck, a max-min
fair distributed algorithm that is also quiescent. As far as we
know, B-Neck is the first max-min fair distributed algorithm
that does not require a continuous injection of control traffic
to compute the rates. When changes occur, affected sessions
are asynchronously informed, so they can start the process
of computing their new rate (i.e., sessions do not need to
poll the network for changes). The correctness of B-Neck is
formally proved, and extensive simulations are conducted.
In them it is shown that B-Neck converges relatively fast
and behaves nicely in presence of sessions arriving and de-
parting.
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1. INTRODUCTION
The fair distribution of network resources among a set of

sessions is a recurring problem. In this problem, each session
connects via a single communication path a source node and
a destination node in the network, with the objective of
maximizing the transmission rate (i.e., throughput) between
them. Since the links of the network have limited capacity,
the solution of the problem must use some criterion to fairly
distribute the network resources among the sessions.
A popular fairness criterion to share the available network

capacity among a set of sessions without incurring in link
overload is the, so called, max-min fairness [3]. The basic
idea behind the max-min fairness criterion is to first allocate
equal bandwidth to all contending sessions at each link, and
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if a session can not utilize its bandwidth because of con-
straints elsewhere in its path, then the residual bandwidth
is distributed among the other sessions. Thus, no session
is penalized, and a certain minimum quality of service is
guaranteed to all sessions. More precisely, max-min fairness
takes into account the path of each session and the capacity
of each link. Then, each session i is allocated a transmission
rate λi so that no link is overloaded, and a session can only
increase its rate at the expense of a session with the same
or smaller rate.

2. RELATED WORK
We are interested in computing the max-min fair rate al-

location for single path sessions. The max-min fair rates
of the sessions can be efficiently computed in a centralized
way with the Water-Filling algorithm [3]. Max-min fairness
has usually been chosen as the target fairness criterion im-
plemented by congestion control protocols to allocate the
bandwidth of network links among the sessions that cross
them. From a taxonomic point of view, centralized and dis-
tributed algorithms have been proposed. The latter have
typically been implemented as congestion control protocols.

To our knowledge, the proposals of Gallager [7] and Kat-
evenis [11] were the first to apply max-min fairness to share
bandwidth among sessions in a packet switched network.
Later on, when ATM networks appeared, several distributed
algorithms were proposed to calculate virtual circuit max-
min fair rates in the Available Bit Rate (ABR) traffic mode
[1, 2, 4, 8, 12]. Charny et al. [4] seem to have been the first
to analytically prove the correctness of their proposed algo-
rithm. Hou et al. [8] generalized the Charny algorithm to
extend the max-min fairness criterion with minimum rate
requests and peak rate constraints. A problem of the al-
gorithm in [4] (when pseudo-saturated links appear) was
identified and documented by Tsai and Kim [12]. While
the distributed algorithms mentioned need per-session state
information at the routers of the network, distributed al-
gorithms that only use constant state information in each
router have also been proposed [1, 5].

Recent research trends in explicit congestion control pro-
tocols (XCP [10], RCP [6], PIQI-RCP [9]) implement effi-
cient congestion controllers in routers, without the need to
store and process state information for each session (in the
case of RCP, even with a low per packet computational over-
head), and guarantee that the max-min fair rate assignments
are achieved when controllers are in steady state. These pa-
pers analyze the stability of these protocols, but the experi-
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mental evaluations are done on simple topologies composed
by a small number of links and sessions (far from real sce-
narios of large networks with transient dynamics).
None of the distributed algorithms mentioned above is

quiescent, and so, traffic must be injected continuously in
to the network in order to keep the system stable. It is
not straightforward to transform any of these algorithms to
achieve quiescence since they do not have mechanisms to
detect convergence to the max-min fair rate.

3. CONTRIBUTIONS
In this brief announcement we propose B-Neck, a max-min

fair distributed algorithm that is also quiescent. As far as we
know, B-Neck is the first such algorithm. Instead of requir-
ing a continuous injection of traffic to compute the max-min
fair rates, B-Neck uses a limited number of control packets.
In addition, each node only requires information of the ses-
sions that traverse it. When changes occur, affected sessions
are asynchronously informed, so they can start the process
of computing their new rate (i.e., sessions do not need to poll
the network for changes). Quiescence is a key design concept
of B-Neck, because B-Neck routers are capable to detect by
themselves changes in the convergence conditions (from in-
stability to stability and vice-versa) of max-min fair session
rates, and to notify them to the affected sessions. Addition-
ally, affected sessions collaborate with routers to propagate
atomically these changes to the rest of the routers in their
paths. This behavior is not present by design in any of the
non-quiescent published algorithms, and so, as mentioned,
the transformation of any of these algorithms to a quiescent
one is not a trivial problem.
We have formalized the interaction between the (applica-

tions that create and use the) sessions and B-Neck, with a
set of primitives. Then, primitives to start and end sessions
have been defined (namely, API .Join and API .Leave). A
primitive that B-Neck uses to notify a session of a change
in its rate is also defined (namely, API .Rate). Finally, the
interface allows a session to fix the maximum rate that it
requires both at the time it is created (with API .Join) and
by using a fourth primitive, defined to change the requested
maximum rate (namely, API .Change).
The properties of B-Neck are formally proved. This proof

has two parts. Firstly, we show its correctness, i.e., if ses-
sions do not change (for a time period large enough) B-Neck
correctly finds the max-min fair rates of all the sessions, and
notifies these rates to them. Secondly, we show quiescence,
i.e., after computing the rates, eventually B-Neck stops in-
jecting traffic into the network. We want to note that, once
B-Neck is quiescent, changes in the sessions (new arrivals,
departures, or changes in the requested maximum rates) re-
activate it, so that, once the changes end, the new appro-
priate rates are found and notified, and eventually B-Neck
becomes quiescent again.
The properties of B-Neck have been tested with exten-

sive simulations. In them, we have used networks of several
sizes (with up to hundreds of thousands of nodes), with LAN
and WAN characteristics, and with a wide range of session
cardinalities (up to hundreds of thousands of sessions). To
guarantee the correctness of our implementation of B-Neck,
the max-min fair rates obtained have been compared with
rates computed with a centralized algorithm (similar to the
Water-Filling algorithm [3]). B-Neck has always converged
to the right set of max-min fair rates. Our simulations have

shown that B-Neck converges very quickly (30% faster than
[2] in our simulations), even in the presence of many in-
teracting sessions. We have also stressed the algorithm by,
once quiescent, causing large number of simultaneous de-
partures and rate changes. In all cases B-Neck has shown to
be robust and efficient, reaching convergence and quiescence
again quickly. The control traffic caused in the network by
the algorithm is also shown to be limited, and only for highly
dynamic systems with many sessions has more than a few
packets per session. Finally, we have observed that, during
transient behavior, B-Neck assigns temporal rate values to
the sessions that are smaller than the max-min fair rates.
Hence, it is expected that the network links will not suffer
from packet overloading before convergence, due to these
conservative temporal rate assignments.
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