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Abstract—Sleep modes are emerging as a promising technique
for energy-efficient networking: by adequately putting to sleep
and waking up network resources according to traffic demands,
a proportionality between energy consumption and network uti-
lization can be approached, with important reductions in energy
consumption. Previous studies have investigated and evaluated
sleep modes for wireless access networks, computing variable
percentages of energy savings. In this paper we characterize the
maximum energy saving that can be achieved in a cellular wireless
access network under a given performance constraint. In partic-
ular, our approach allows the derivation of realistic estimates
of the energy-optimal density of base stations corresponding
to a given user density, under a fixed performance constraint.
Our results allow different proposals to be measured against
the maximum theoretically achievable improvement. We show,
through numerical evaluation and simulation, the possible energy
savings in today’s networks, and we further demonstrate that
even with the development of highly energy-efficient hardware,
a holistic approach incorporating system level techniques is
essential to achieving maximum energy efficiency.

I. INTRODUCTION

The ethical imperative to reduce their carbon footprint,
combined with the financial realities of increasing energy
costs, and the difficulties of network deployment in developing
countries with unreliable power grids, has telecommunication
network operators keenly interested in energy saving ap-
proaches. In cellular networks, reducing the power consumed
by base stations is, by far, the most effective means to
streamline energy consumption. As an example, in the case of
UMTS, one typical Node-B consumes around 1500 W, and the
multitude of these devices accounts for between 60 and 80% of
the network’s energy consumption [1], [2], often representing
the main component of an operator’s operational expenditures.

The bulk of the research on energy savings in wireless
network was initially focused on the case of ad-hoc and sensor
networks [3], and in the context of hand-held, battery operated
devices [4], [5]. Not much attention was paid until recently
to reducing energy consumption of base stations, since these
were assumed to rely on access to a reliable supply of energy
with acceptable cost. Both assumptions are challenged in the
networking context of today. While equipment manufacturers
are working to produce more energy-efficient hardware [6],
as we show, system-level approaches are called for, to obtain
networks with the lowest possible energy consumption.

Base stations are deployed according to dimensioning strate-
gies that ensure acceptable user performance at peak (worst-

case) traffic loads. However, traffic loads fluctuate throughout
the day. For example, we expect diurnal patterns in the rate
of user requests that mirror human patterns. Additionally, as
the users of the network move during the day, they cause
fluctuations in the spatial traffic load seen by base stations
serving different locations. In [1] and [7], the possibility of
reducing power consumption in cellular networks by reducing
the number of active cells in periods of low traffic was
considered, but the degradation in performance experienced
by users in such a scenario, due to active base stations having
to serve larger numbers of users that are located farther away
from their serving base station was not explicitly taken into
account. However, an important requirement for any energy
saving measure, such as the introduction of sleep modes for
base stations, is that they must be (almost) transparent to
users. This means that the user-perceived performance must
be above the target threshold at peak hours, when the load on
the network is the highest, and all base stations are active, as
well as in non-peak periods, when the load is lower, but the
network is operating with reduced resources. In other words,
the performance sacrifices that are implied by the introduction
of energy-saving measures must be compatible with the target
design objectives.

Recently, heuristics have been proposed to turn off base
stations to conserve energy [8]. Approaches to vary cell sizes
through changing the base station transmit power and in the
limit turning off base stations have also been proposed [9],
[10]. However, to the best of our knowledge, the maximal
energy savings that can be achieved under some predefined
performance constraint are not known.

In this paper, our objective is to obtain a realistic charac-
terization of the potential energy savings that can be achieved
by sleep mode schemes under fixed user performance con-
straints, and study the impact of base station topology, power
consumption model, and user density on the energy-optimal
configuration of the access network. The metric we use to
capture performance is the per-bit delay [11] (whose inverse
approximates the throughput) perceived by a typical best-effort
user. The network is constrained to maintain, at all times,
the average per-bit delay across users below a predetermined
threshold. This focus on user-perceived performance is one of
the key contributions of this paper.

Our contributions are as follows:
• For a given base station topology, we develop a method



for estimating the density of base stations that minimizes
energy consumption and which is sufficient to serve a
given set of active users, with fixed performance guaran-
tees.

• For base stations whose power consumption is indepen-
dent of load (not unlike current hardware), we derive a
topology-independent lower bound on the density of base
stations required to support a particular user density and
thus an upper bound on energy savings.

• Through numerical evaluation and simulations, we com-
pute bounds on the maximum energy saving and illustrate
the impact of various system parameters. We demonstrate
that even with highly energy efficient hardware, system
level techniques are crucial to minimizing energy con-
sumption. We find that the variability in performance
across users is sufficiently low, validating the choice of
the mean of the per-bit delay as a suitable metric for
capturing user performance.

Our results are bounds with respect to what can be achieved in
real networks, since we assume that any base station density
is achievable, although this is clearly not possible in practice,
since in real networks base stations can be turned off, but their
locations cannot be rearranged according to traffic variations.
The relevance of our bounds lies in that they indicate what
are the theoretical minimum base station densities and energy
consumption, allowing the effectiveness of different proposals
to be measured against the maximum theoretically achievable
improvement.

The paper is organized as follows. In Sec. II, we present our
model for the distribution of users and of base stations, and
we state the main assumptions underlying our approach. In
Sec.III, we derive the average and the variance of the per-bit
delay . In Sec.IV, we use the results of the previous sections to
compute the energy-optimal base stations density for a given
user density, and to estimate the achievable energy savings.
Sec. V presents lower bounds on the base station densities
required to satisfy the performance constraints. In Sec. VI, we
present numerical and simulation results, and we conclude the
paper in Sec. VII.

II. MODEL AND ASSUMPTIONS

We consider the downlink information transfer in a cellular
access network. Users form a homogeneous planar Poisson
point process, Πu, with intensity λu users per square km,
while base stations form a planar point process, Πb, with
density λb base stations per square km. While the methodology
introduced in this paper is quite general, and can be extended
to many different base station configurations, we restrict
ourselves to the following models for base station distribution
across the service area:
• Manhattan layout: base stations lie on the vertices of a

square grid, where the side of each square is lb = 1√
λb

km.
• Hexagonal layout: base stations lie at the centers of a
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Fig. 1. Empirical distribution of the number of base stations in a rectangular
area of downtown Sydney (AU), and Poisson distribution with equal average.

• Poisson layout: base stations are distributed over the ser-
vice area according to a two-dimensional homogeneous
Poisson point process with density λb.

The first two distributions above reflect regular topologies used
for the analysis and design of cellular networks, while the third
reflects the result of real life constraints on the base station
locations. For example, we examined the distribution of the
base stations operated by an important international operator
in the bay area of Sydney, Australia [12]. The area we chose
is densely populated, with an average base station density of
81.64 base stations per square km, and is a good candidate for
reducing the density of active base stations in periods of low
load. Fig. 1 displays the empirically determined distribution
of the number of base stations within a randomly centered
124 m × 336 m rectangle, along with a Poisson pdf with an
expected value matching the average number of base stations
found within the rectangle. While the Poisson pdf is not an
exact fit, it reasonably approximates the variability introduced
by practical constraints on base station location.

We assume that all base station densities are feasible. In the
case of the Manhattan and hexagonal layout of base stations,
since only a subset of existing base stations can be turned
off, only a discrete subset of densities corresponding to those
that maintain the structure of the topology can be achieved.
However, in the homogeneous Poisson process layout of base
stations, if each base station independently makes a decision
to either turn off, or stay on, according to some probability,
the resulting point process of base stations is a thinned
homogeneous Poisson process, and all base station densities
are indeed achievable.

The end user performance metric that we use is per-bit delay
of best effort data transfers.

Definition 2.1 (Per-bit delay): The per-bit delay, τ , that a
user perceives is defined as the inverse of the user throughput,
i.e., the actual rate at which the user is served, taking into
account both the capacity to the user, as well as the sharing
of the base station time across all associated users.

Both the average and the variance of the per-bit delay will
be computed and used as performance metrics in this paper.
The performance constraint that is enforced is as follows: if
the per-bit delay experienced by a typical user, τ̄ , is less than a
predefined threshold τ̄0 seconds, then users are said to perceive



satisfactory performance, and the corresponding base station
distribution is feasible. Here, the interpretation of a typical
user is that provided by Palm theory [13], and τ̄ is computed
as the expectation of τ with respect to the Palm distribution
P 0 associated with Πu. Intuitively, the Palm distribution is the
conditional distribution given that there is a point belonging to
Πu at the origin. The variance of the per-bit delay allows the
characterization of the spread of the performance perceived
by different end users at a given time instant. It should be
however observed that user mobility makes the performance of
each individual user vary over time, reducing variance across
users in the long run. For this reason, we just use the average
as a performance constraint, but we also observe the variance,
in order to verify that performance differences across users
remain acceptable.

A. Channel and Service Model

In this paper, we do not consider the effect of shadowing
and only take into account distance-dependent path loss. We
assume that users are served by the base station that is closest
to them, i.e., by the base station that corresponds to the
strongest received signal, as it normally happens in reality.
Denote by S(x), the location of the base station that is closest
to a user located at x, and by D(x) the distance between
the user and the closest base station. The number of active
users associated with base station S(x) is denoted N(S(x)).
We denote the capacity to a user located at a distance r from
the base station by C(r) bit/s per Hertz. The capacity can be
modeled, for example, using Shannon’s capacity law or other
models such as a quantized set of achievable rates. In this
paper, we focus on the case where the network only serves
best-effort traffic. The analysis can be extended to the case
of a mixture of best-effort and delay-sensitive traffic, however
we do not report the results here due to space limitations. We
assume that base stations use a processor sharing mechanism
to divide capacity among all the connected best-effort users.
By doing so, a notion of fairness is imposed, since all best
effort users associated with a particular base station are served
for an identical fraction of time.

B. Energy Consumption Model

We assume that base stations always transmit at a fixed
transmit power. When the base station density is higher than
that required to achieve the threshold expected per-bit delay
τ̄0, we assume that base stations only serve users for the
fraction of time required to satisfy the performance constraint,
and remain idle (i.e., not transmitting to any user) for the
rest. We denote with U the utilization of base stations, i.e.,
U is the average fraction of time in which the base station is
transmitting.
We model the power in watts consumed by a base station as
k1 +k2U , where k1 is the power consumed by keeping a base
station turned on with no traffic, and k2 is the rate at which
the power consumed by the base station increases with the
utilization. The first energy model that we study reflects the
current base station design, and assumes that the bulk of the

energy consumption at the base stations is accounted for by
just staying on, while the contribution to energy consumption
due to base station utilization is negligible (i.e., k2 = 0). We
also study energy consumption models with k1 and k2 chosen
to reflect a more energy-proportional scenario i.e., k1 << k2.

III. MODELING USER PERCEIVED PERFORMANCE

We characterize the per-bit delay perceived by a typical best-
effort user who is just beginning service, as a function of the
density of users and base stations under the different base
station topologies.

Theorem 3.1: The average per-bit delay, τ̄ , perceived by a
typical best-effort user joining the system when the density of
base stations is λb and the density of users is λu, is given by:
• Hexagonal layout:
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• Poisson layout:
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where A(r, x, θ) is the area of the circle centered at
(x, θ) with radius x that is not overlapped by the circle
centered at (0,−r) with radius r.
Proof Sketch: We leverage Slivnyak’s theorem [13], and

derive a formula for the mean per-bit delay experienced by
adding a point at the origin to Πu. The mean per-bit delay
depends on the capacity at which the user at the origin can
be served, which in turn depends on the distance between the
user and the serving base station (the one that is closest to
the origin). Further, the per-bit delay perceived by any user is
affected by the number of users that share the serving base
station. The mean per-bit delay experienced by the user at the
origin can be computed as:

E 0[τ ] = E 0

[(
C(D(0))

N(S(0))

)−1
]

= E 0

[
N(S(0))

C(D(0))

]
. (4)

Here, E 0 denotes the expectation with respect to the Palm
distribution associated with Πu . A detailed proof including
the formula to compute A(r, x, θ) is in Appendix A.

Further, we characterize the variance in the user-perceived
per-bit delay through the following theorem.

Theorem 3.2: The variance of the per-bit delay, (σ)2, per-
ceived by a typical best-effort user joining the system when
the density of base stations is λb and the density of users is
λu, is given by:



• Hexagonal layout:
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• Poisson layout:
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− (τ̄P )2. (7)

Proof Sketch: The proof is similar to that of Theorem 3.1,
and additionally makes use of the fact that the users form a
Poisson point process, thus

Var 0[N(S(0))] = E 0[N(S(0))].

We skip the detailed proof due to space limitations.

IV. OPTIMIZING BASE STATION ENERGY CONSUMPTION

In the case of the energy model with k2 = 0, energy
consumption is minimized by using the lowest base station
density that can achieve the desired user performance. Given
λu and λb, the per-bit delay perceived by a typical user can be
evaluated using the results from Sec. III. E0 [τ̄ ] is decreasing
in λb. Thus, we can set the expressions equal to the target
per-bit delay, τ̄0, to determine the minimum required base
station density λ∗b . For this case, that approximates current
base station power consumption trends, we determine lower
bounds for the required base station density and thus energy
consumption, irrespective of base station distribution, in the
following section.

When k1 << k2, the utilization of the base stations in the
network plays a key role in determining the energy consumed.
Again, τ̄ can be evaluated given λu and λb using the results
from Sec. III. In this case, it is easy to see that the desired
user performance can be achieved by the base stations only
actively serving best-effort users for a time fraction τ̄

τ̄0 of the
time originally used, provided that τ̄ < τ̄0. If, instead, τ̄ > τ̄0,
the base station density λb cannot meet the performance
constraint. Thus, the base station serving the typical user will
be serving actively for a time fraction τ̄

τ̄0 . From this, we
can calculate the energy consumed in order to satisfy the
performance constraint at any feasible base station density.
By inspection, we can then determine the base station density
that minimizes energy consumption.

V. A LOWER BOUND ON BS DENSITY

Clearly, the density of base stations required to support a
particular population of users depends on the geometry of the
base station layout. In this section, we determine a lower
bound on the base station density required to achieve the
target average per-bit delay across all base station distributions.
This lower bound corresponds to the base station density that
minimizes energy consumption in the case of the energy model
with k2 = 0.

Theorem 5.1: A lower bound on the minimum density of
base stations sufficient to serve a population of users with
density λu with an average per-bit delay τ̄0 is given by λ∗b
that satisfies

τ̄0 = 2πλu

∫ 1√
λ∗
b
π

0

1

C(r)
r dr (8)

Also, there exists a configuration with base station density less
than 1.173λ∗b that is feasible.
Proof: see Appendix B.

VI. NUMERICAL EVALUATION

In this section we estimate numerically, in some simple
scenarios, the potential energy savings that can be obtained
by turning off base stations in periods of low load, while still
guaranteeing quality of service. Base station transmit power p
is assumed to be 30W . Base stations work at a frequency of 1
GHz, and use a bandwidth of 10 MHz. We use a log distance
path loss model, with path loss at a reference distance of one
meter calculated using Friis equation, and with a path loss
exponent α = 3.5. We assume that the rate perceived by users
is given by Shannon’s capacity law. Thus, the capacity to a
user located at a distance r from the base station is given
by C(r) = 107 log2

(
1 + pr−α

N0

)
bit/s, where N0 = −174

dBm/Hz is the power spectral density of the additive white
Gaussian noise. However, the maximum rate at which the base
station can transmit data is limited to 55 Mbps.

We considered different choices for the parameters of the
base stations energy model while always keeping the total
power consumed by a base station with utilization 100% at
1500W. In one setting, the total energy consumption does not
vary with the base station utilization. In this setting, we choose
k1 = 1500 W and k2 = 0 W, in accordance with typical values
found in the literature. We refer to this setting as the on-off
setting. This choice of parameters approximately models the
behavior of base stations currently deployed, in which the
dependency of the energy consumed on load is negligible.
Moreover, as current trends in base stations design aim at tying
power consumption to base station utilization, we considered
a few settings in which the energy consumed by a base station
depends on the utilization of the base station . These energy
proportional (EP) settings allow us to examine how strategies
for turning off base stations could evolve in the future. We
distinguish them by the ratio k2

k1+k2
that we use as a metric for

energy proportionality. For instance, a setting with k1 = 500
W and k2 = 1000 W is denoted EP 66.6% and one with
k1 = 100 W and k2 = 1400 W is denoted EP 93.4%.



In Fig. 2, we plot the optimal base stations density (i.e. the
one that minimizes the average power consumption per Km2

due to base stations, as described in Section IV) versus user
density, for various base stations layouts and energy settings.
We also plot the lower bound on base station density obtained
as described in Section V.

Fig. 2. Energy-optimal base stations density versus user density, for Poisson
base stations layout (unless otherwise indicated).

We focus first on the curves that represent the on-off setting.
Note that for this setting, energy consumption is directly
proportional to base station density. We see that regular layouts
(namely, the hexagonal and Manhattan layouts) are the most
energy efficient, and they are only slightly worse than the
lower bound derived from (8). The Poisson layout consumes
more energy due to the variability in cell sizes. As we would
expect, decreasing the target average per-bit delay results
in layouts with increased base station densities. Fig. 2 also
exhibits the base station density corresponding to the case
where the number of users per base station is held constant,
i.e., a case where base station density is directly proportional to
user density. We can see that decreasing base stations density
proportionally to user density results in a highly optimistic
estimate of energy savings. When user performance constraints
are taken into account, actual energy savings are much less.

Under the energy proportional model, the minimum base
station density that achieves the target performance is not
necessarily the one that minimizes energy consumption. As
illustrated in the figure, the base station density that mini-
mizes energy consumption is higher in this case than under
the on-off model. This indicates that as hardware becomes
increasingly energy proportional, cellular layouts would tend
towards higher densities of smaller cells. The effect on energy
consumption is discussed later.

We also observe that the gap in the energy-optimal base
station density between the on-off energy model and the
more energy proportional model decreases with increasing
user density. To understand the reason behind this, we refer
to Fig. 3. This figure shows that, at the energy-optimal base
station density, base station utilization increases with user
density. This increase is due to the non-linearly increasing
inefficiency in serving users farther and farther away from

the base station. Thus, at higher user densities, base stations
tend to operate closer to peak capacity and thus the difference
between the two energy models diminishes. Note that the base

Fig. 3. Average utilization level of base stations at the optimal base stations
density versus user density for a Poisson base stations layout.

station utilization under the on-off energy model (not shown)
in the energy-optimal base station density is always 100%. For
a given user density, this utilization decreases as base stations
become increasingly energy proportional, indicating that base
station densities increase and cells become smaller.

The amount of energy savings achievable with sleep modes
is shown in Fig. 4. For a given energy model and a target
average per-bit delay, we consider a network that is optimally
planned for a peak user density of 105 users per Km2, and
evaluate the amount of energy that can be saved by switching
off base stations in periods of lower user density. We see that,
when user density reduces from 105 to 103, we can achieve
energy savings of up to 95% by reducing accordingly the
number of active base stations. Moreover, a reduction of user
density by a factor of 10 is already sufficient to save more
than 85% on the power consumed at peak load. We can also
observe that energy savings exhibit little dependence on either
the specific target average per-bit delay, or on the base station
energy model.

Fig. 4. Percentage of energy saved with sleep modes in a Poisson layout, with
respect to the energy consumed at a peak user density of 105 users/Km2.

The importance of sleep modes and system level techniques



is evident from Fig. 5, where we plot the average power
consumed per square kilometer for the Poisson layout in two
cases: i) when sleep modes are used to adapt the base station
density to load, and ii) when the network is always provisioned
for the peak load, so that power savings are only due to the
energy proportionality of the base station power consumption.

We observe that in case i), when sleep modes are used,
energy proportional base stations result in a slightly more
energy efficient behavior at low user densities, as expected.
However, we clearly see that much of the reduction in energy
consumption is obtained through the intelligent use of sleep
modes to adapt the active base station density to the user
population, even in the absence of improved hardware.

On the contrary, in case ii), when sleep modes are not used,
and the base station density remains at the level required
to support the peak user density, energy proportional base
stations do provide large energy savings with respect to current
base stations whose power consumption is almost independent
of utilization. However, the power consumption at low user
densities is up to two orders of magnitude higher in this case
with respect to case i), even under highly optimistic (and
probably unrealistic) assumptions on energy proportionality.
This highlights the need to tackle the problem of energy con-
sumption in cellular access networks through both improved
hardware and system level techniques. It also shows clearly
that, even under futuristic assumptions on the energy efficiency
of hardware, the intelligent use of sleep modes and other
dynamic provisioning techniques can be crucial to achieving
maximum energy efficiency.

Fig. 5. Minimum power consumed by base stations per Km2, as a function
of user density. Base stations layout is Poisson, and τ = 10µs.

In Fig. 6 on the right y axis, we plot the minimum amount
of power consumed per user, and on the left y axis, the optimal
number of users per cell, both as a function of user density,
for Poisson base station layouts. We observe how the per-user
consumed power decreases with increasing user density. At
high user densities, cells are small and base stations serve
users that are relatively close. Therefore, as path losses are
inferior on average, this represent a more energy efficient
configuration. Moreover, as user density grows, the number

of users per cell in the energy-optimal configuration increases
while the size of the cells decreases. We also note that the
slope of these curves is higher at low user densities. This is
again due to the inefficiency of serving users farther away from
base stations, which increases non-linearly with the size of the
cells. The inefficiency of serving low user densities suggests
that operators could gain substantially by cooperating and
sharing infrastructure in periods of low demand as suggested
in [14].

Fig. 6. Right y axis: Minimum amount of power consumed per user. Left
y axis: Optimal number of users per cell as a function of user density. Base
stations are distributed according to the Poisson layout.

Fig. 7. Standard deviation, 95% Chebyshev bound and 95th percentile of
the per-bit delay. All quantities are normalized over an average per-bit delay
of 1µs.

In order to validate our analytical results, we have run a
large number of simulations, whose results (obviously) are
in accordance with the numerical results derived from the
formulas presented in this paper. In Fig. 7, we plot the ratio
of the standard deviation of the per-bit delay (as derived in
Theorem 3.2) to the average, and compare it to the 95th
percentile of the per-bit delay derived from simulations, for
the on-off energy model. We also plot the bound on the 95th
percentile obtained using the Chebyshev bound normalized by
the mean per-bit delay. As we can see, in the Poisson layout the



95th percentile is never larger than three times the average, and
it does not vary significantly with user density. Also, the ratio
of standard deviation and percentiles to the mean is very flat
over the range of user densities. The curves for the hexagonal
layout show that regular base station layouts translate into less
variability in the per-bit delay across users. As these results
on variability do not take into account the averaging effect
on the user perceived per-bit delay induced by user mobility,
we would expect variability in a more realistic situation with
user mobility to be lower. Overall, these results suggest that
the mean per-bit delay (possibly with a safety margin) is a
reasonable design metric for sleep mode algorithms.

VII. CONCLUSIONS

In this paper, we presented a novel approach for estimating
both the energy savings that can be achieved in cellular access
networks by using sleep modes in periods of low traffic loads
as well as the energy-optimal base station densities as a
function of user density. By taking into account the quality of
service perceived by end users, our approach allows the deriva-
tion of more realistic estimates that can be used to evaluate
the efficacy of schemes utilizing sleep modes to save energy.
The proposed approach can be applied to many base station
configurations, and to many energy models for base stations.
We demonstrated with numerical and simulation results that
substantial energy savings are possible through schemes that
adapt the density of base stations to the fluctuations in user
density. We also showed that such system level schemes are
essential even if base stations themselves become more energy
proportional in the future.

We are currently working on extending this approach to
mixed traffic scenarios, where voice and video traffic have
higher priority than best effort traffic, and to clustered user
populations. We also aim at incorporating mobility in our
analysis, and investigating the impact that methods such as
power control and opportunistic scheduling have on energy
consumption.
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APPENDIX

A. Proof of Theorem 3.1

Proof:
1) Hexagonal layout:

τ̄H = E 0

[
N(S(0))

C(D(0))

]
= E 0[N(S(0))]E 0

[
1

C(D(0))

]
=

3
√

3

2
l2Hλu

∫ √
3

2 lH

0

∫ y√
3

− y√
3

1

C(
√
x2 + y2)

4√
3l2H

dxdy

= 6λu

∫ √
3lH
2

0

∫ y√
3

− y√
3

1

C(
√
x2 + y2)

dxdy

The first step above follows because the size of the hexagons in
the tessellation is fixed, and the number of users served by the
base station closest to the origin is independent of the distance
to the origin, and only depends on the area of a hexagonal cell.
The proof for the Manhattan layout follows closely the above
methodology.

2) Poisson layout: The case where base stations are dis-
tributed as a homogeneous Poisson point process is more
involved, since the size of the cell that the typical user belongs
to is correlated with the distance between the user and the base
station. For example, if the closest base station to a user is far
away, that base station is likely to be serving a large cell with
many users, and vice versa.

In the following, B(c, r) denotes a ball of radius r centered
at c.

τ̄P = E 0

[
N(S(0))

C(D(0))

]
=

∫ ∞
0

E 0

[
N(S(0))

C(D(0))

∣∣∣∣∣r ≤ D(0) ≤ r + dr

]
P (r ≤ D(0) ≤ r + dr)

=

∫ ∞
0

E 0[N(S(0))|r ≤ D(0) ≤ r + dr]

C(r)

P (B(0, r) = φ))λb2πr dr

=

∫ ∞
0

E 0[N(S(0))|r ≤ D(0) ≤ r + dr]

C(r)

e−λbπr
2

λb2πr dr. (9)



where P (B(0, r) = φ) is the probability that a ball of radius
r centered at the origin is empty.

Now, we turn to deriving the conditional expectation above.
The expected number of users attached to the base station
serving the user at the origin can be evaluated as follows:

E 0[N(S(0))|r ≤ D(0) ≤ r + dr]

= E 0

[∫ ∞
0

∫ 2π

0

1(S(x,θ)=S(0)|r≤D(0)≤r+ dr)λu dθxdx

]

=

∫ ∞
0

∫ 2π

0

P (S(x, θ) = S(0)|r ≤ D(0) ≤ r + dr).

λu dθxdx,

where 1(S(x,θ)=S(0)) is the indicator function of the event that
a user at location (x, θ) is served by same base station that
serves the user at the origin.

For the purpose of computing the conditional probability, we
assume without loss of generality that the base station closest
to the origin is located at (0, r). To evaluate the probability
that a user at a given location is served by the same base
station that serves a user at the origin, we use a simple change
of coordinates, that moves the base station to the origin. In
this shifted coordinate system, the typical user placed at the
origin is now located at (0,−r). A user at location (x, θ)
will also be served by the base station at the origin, if there
is no other base station that is closer, i.e., if there is no
base station in a circle of radius x centered at (x, θ). The
probability that this is the case, given that there are no base
stations in a circle of radius r centered at (0,−r), is given by
exp(−λbA(r, x, θ)), where A(r, x, θ) is the area of the circle
centered at (x, θ) with radius x that is not overlapped by the
circle centered at (0,−r) with radius r. This non-overlapped
area can be computed using standard trigonometric identities.
Denoting the distance between the centres of the two circles
by d(r, x, θ) =

√
x2 + r2 + 2xr sin(θ), we have:

A(r, x, θ) = πx2 −

[
r2 arccos

(
2r2 + 2xr sin(θ)

2rd(r, x, θ)

)
+

x2 arccos

(
2x2 + 2xr sin(θ)

2xd(r, x, θ)

)
−1

2
(−d(r, x, θ) + r + x)

1
2 (d(r, x, θ) + r − x)

1
2

(d(r, x, θ)− r + x)
1
2 (d(r, x, θ) + r + x)

1
2

]
.

Using the above expression, we obtain

E 0[N(S(0))|r ≤ D(0) ≤ r + dr] =∫ ∞
0

∫ 2π

0

e−λbA(r,x,θ)λu dθxdx. (10)

Finally, we obtain the mean per-bit delay experienced by a
typical user by substituting expression (10) into (9). Note that
this methodology can be applied to other base station layouts
as well.

B. Proof of Theorem 5.1

First, we examine the case of a single base station and
determine the shape of the cell that maximizes the area (users)
covered while still satisfying the performance requirements.

Lemma A.1: When capacity to a user is a decreasing func-
tion of distance, a base station maximizes the area (number of
users) covered while satisfying the performance constraint on
per-bit delay by serving an area that is a circle with the base
station at the center.

Proof: Consider a maximal service area that satisfies the
per-bit delay constraint and is not a circle. There must exist
a region at a distance d1 from the base station that is not
included in the service area while another at a distance d2 >
d1 is. Let the average per-bit delay achieved by the maximal
service area be τ̄m. Consider swapping an area of measure ε
at distance d2 with an area of the same measure at distance
d1. The expected per-bit delay for the new service area, τ̄n

can be calculated as:

τ̄n = τ̄m − λuε

C(d2)
+

λuε

C(d1)

Since C(d1) > C(d2), τ̄n < τ̄m. Thus, the new service area
satisfies the per-bit delay constraint as well. We can continue
this procedure until a region at a distance d′ from the base
station is included only if all regions at distance d < d′ are
included.

Proof of Theorem 5.1: To determine a lower bound on
the density of base stations, we determine r∗c , the radius of the
largest circular service area (users therein) that a single base
station can serve while meeting the per-bit delay constraint.
The area of this circle corresponds to the maximum area of
a cell that satisfies the performance constraint. The density of
base stations corresponding to cells of this size provides the
lower bound. The expected user-perceived per-bit delay in a
circular service area of radius r∗c can be computed similar to
the case of the hexagonal layout as:

τ̄C = 2πλu

∫ r∗c

0

1

C(r)
r dr, (11)

providing the lower bound when λ∗b = 1
π(r∗c )2 .

Now, consider a hexagonal layout of base stations. If a base
station can support users within the circle that superscribes a
hexagon, then the base station can clearly support the users
in the hexagon. Thus, an upper bound for the density of base
stations required in a hexagonal layout, and thus an upper
bound on the minimal density of base stations can be computed
using the packing density of a hexagonal layout to be: λUb =(

3
√

3(r∗c )2

2

)−1

, which proves the tightness result.


