
Minimizing Total Busy Time in Parallel

Scheduling with Application to Optical

Networks ⋆,⋆⋆

Michele Flammini a Gianpiero Monaco f Luca Moscardelli b

Hadas Shachnai c Mordechai Shalom d Tami Tamir e

Shmuel Zaks c

aDepartment of Computer Science, University of L’Aquila, Italy.

bDepartment of Science, University of Chieti-Pescara, Pescara, Italy.

cDepartment of Computer Science, The Technion, Haifa, Israel.

dTel-Hai Academic College, 12210 Upper Gallilee, Israel.

eSchool of Computer Science, The Interdisciplinary Center, Herzliya, Israel.

fMascotte joint project, INRIA/CNRS/UNSA, Sophia Antipolis, France

Abstract

We consider a scheduling problem in which a bounded number of jobs can be

processed simultaneously by a single machine. The input is a set of n jobs J =

{J1, . . . , Jn}. Each job, Jj , is associated with an interval [sj , cj] along which it

should be processed. Also given is the parallelism parameter g ≥ 1, which is the

maximal number of jobs that can be processed simultaneously by a single machine.

Each machine operates along a contiguous time interval, called its busy interval,

which contains all the intervals corresponding to the jobs it processes. The goal is

to assign the jobs to machines so that the total busy time is minimized.

The problem is known to be NP-hard already for g = 2. We present a 4-approxi-

mation algorithm for general instances, and approximation algorithms with im-

proved ratios for instances with bounded lengths, for instances where any two inter-

vals intersect, and for instances where no interval is properly contained in another.

Our study has application in optimizing the switching costs of optical networks.

Preprint submitted to Elsevier Science 28 April 2010

1 Introduction

1.1 Problem Statement

Job scheduling on parallel machines has been widely studied (see, e.g., the surveys in [3,7]).

In particular, much attention was given to interval scheduling [18], where jobs are given

as intervals on the real line, each representing the time interval in which a job should be

processed; each job has to be processed on some machine, and it is commonly assumed that

a machine can process a single job at any time.

In this paper we consider interval scheduling with bounded parallelism. Formally, the input

is a set of n jobs J = {J1, . . . , Jn}. Each job, Jj, is associated with an interval [sj, cj] in

which it should be processed. Also, given is the parallelism parameter g ≥ 1, which is the

maximal number of jobs that can be processed simultaneously by a single machine. At any

given point t in time a machine Mi is said to be busy if there is at least job Jj scheduled to

it such that t ∈ [sj, cj], otherwise the machine is said to be idle at time t. We call the time

period in which a machine Mi is busy, its busy period and denote its length by busyi. The

goal is to assign the jobs to machines such that the total busy time of the machines, given

by
∑

i busyi, is minimized. W.l.o.g the busy period of a machine Mi is contiguous, because

otherwise we can divide the busy period to contiguous intervals and assign the jobs of each

contiguous interval to a different machine. Obviously this will not change to total busy time.

Therefore we say that a machine Mi has a busy interval, which starts at the minimum start

time of any job scheduled on Mi and ends at the maximum completion time of any of these

jobs. Note that the number of machines to be used is part of the output of the algorithm

(and can take any integral value m ≥ 1).

Our study is motivated from a central problem in optical network design, namely, assign-

⋆ A preliminary version of this work has been published in the Proceedings of the 23rd IEEE

International Parallel and Distributed Processing Symposium (IPDPS 2009).
⋆⋆This work was partially supported by the PRIN 2008 research project COGENT (Computa-

tional and GamE-theoretic aspects of uncoordinated NeTworks), funded by the Italian Ministry of

University and Research.
Email addresses: flammini@di.univaq.it (Michele Flammini),

gianpiero.monaco@di.univaq.it (Gianpiero Monaco), moscardelli@sci.unich.it (Luca

Moscardelli), hadas@cs.technion.ac.il (Hadas Shachnai), cmshalom@telhai.ac.il

(Mordechai Shalom), tami@idc.ac.il (Tami Tamir), zaks@cs.technion.ac.il (Shmuel Zaks).

2

ing wavelengths to a given set of lightpaths so as to minimize the total switching cost of

the network (we elaborate on that in Section 4). In fact, our scheduling problem was first

considered in [19] as a problem of fiber minimization. The paper shows that the problem is

NP-hard already for g = 2.

The problem of interval scheduling with bounded parallelism naturally arises in systems

where service costs depend on the busy times (or, utilization) of the machines/servers. We

note that when the objective is to minimize the number of machines needed to complete all

jobs our problem is polynomially solvable. Indeed, given an instance of the problem, we can

initially solve the minimum coloring problem on interval graphs; then, we scan the jobs by

color classes and schedule the next g colors classes on a single machine. Thus, a k-coloring

induces a schedule on ⌈k/g⌉ machines.

Throughout the paper, we refer to our scheduling problem also as the following graph the-

oretic problem. An interval graph is the intersection graph of a set of intervals on the real

line. It has one vertex for each interval in the set, and an edge between every pair of vertices

corresponding to intersecting intervals. In our settings, each vertex corresponds to a job, and

there is an edge between two jobs whose processing times overlap. Let H = (JH , EH) be a

subgraph of an interval graph, induced by the set of vertices JH , then the cost of H is given

by maxj∈JH
cj −minj∈JH

sj. Our problem can be stated as the following graph partitioning

problem. Given an interval graph, partition its vertices into subsets (i.e., assign the jobs to

machines) such that: (i) the maximal size of a clique in each set is at most g, for some g ≥ 1,

and (ii) the total cost of the subgraphs is minimized.

1.2 Related Work

Some of the earlier work on interval scheduling considers the problem of scheduling a feasible

subset of jobs whose total weight is maximized, i.e., a maximum weight independent set (see,

e.g., [1] and the comprehensive survey in [17]). There has been earlier work also on the

problem of scheduling all the jobs on a set of machines so as to minimize the total cost (see,

e.g., [2]), but in these works the cost of scheduling each job is fixed. In our problem, the

cost of scheduling each of the jobs depends on the number of other jobs scheduled on the

same machine in the corresponding time interval; thus, it may change over time and among

different machines.

Our study relates also to batch scheduling of conflicting jobs, where the conflicts are given as

3

an interval graph. In batch scheduling 1 a set of jobs can be processed jointly. All the jobs in

the batch start simultaneously, and the completion time of a batch is the last completion time

of any job in the batch. (For known results on batch scheduling, see e.g., [3].) Our scheduling

problem differs from batch scheduling in several aspects. While each machine can process g

jobs simultaneously, for some g ≥ 1, the jobs need not be partitioned to batches, i.e., each

job can start at different time. Also, while in known batch scheduling problems the set of

machines is given, we assume that any number of machines can be used for the solution.

Finally, while common measures in batch scheduling refer to the maximum completion time

of a batch, or a function of the completion times of the jobs, we consider the total busy times

of the machines.

Our approximation algorithm for proper interval graphs (see in Section 3) solves as a sub-

routine a clique partitioning problem in interval graphs. There has been earlier work, more

generally, on the problem of partitioning a graph to cliques, however, the objective functions

are different than ours (see, e.g., [13]).

Finally, as mentioned above, the complexity of our scheduling problem was studied in [19].

We are not aware of earlier studies that present approximation algorithms for this problem.

1.3 Our contribution

In Section 2 we give a 4-approximation algorithm for general inputs. In Section 3 we present

algorithms with improved ratios for some special cases. Specifically, we give 2-approximation

algorithm for instances where no interval is properly contained in another (i.e., the input

forms a proper interval graph), and a (2 + ε)-approximation for bounded length instances.

In the Appendix we give a 2-approximation algorithm for instances where any two intervals

intersect. While an algorithm with the same approximation ratio was given in [8], the present

algorithm as well as the analysis are different. We believe it may find uses in solving our

problem for other subclasses of instances. Our results have immediate consequences on the

regenerator minimization problem in optical networks when the topology under consideration

is a path (see Section 4). In [9] we generalize the results implied by this work to any network

topology.

Recently, our 4-approximation algorithm was extended to a 5-approximation algorithm for

general instances, where each job has a release time, a due date, a processing time and a

1 We refer here to the p-batch scheduling model (see e.g. Chapter 8 in [3]).

4

demand for machine capacity [15]. The paper gives better bounds and exact algorithms for

several special cases, including proper interval graphs, intervals forming a clique and laminar

families of intervals. In particular, for the spacial case of a clique the paper shows that our

problem admits a polynomial time approximation scheme.

1.4 Preliminaries

Unless specified otherwise, we use lowercase letters for indices and upper case letters for jobs,

time intervals and machines; also, calligraphic characters are used for sets of jobs, sets of

intervals and sets of machines.

Definition 1.1 Given a time interval I = [s, c], the length of I is len(I) = c − s. This

extends to a set I of intervals; namely, the length of I is len(I) = ∑
I∈I len(I).

Definition 1.2 For a set I of intervals we define the span of I as span(I) = len(∪I).

Note that span(I) ≤ len(I) and equality holds if and only if I is a set of pairwise disjoint

intervals. Because jobs are given by time intervals, we use the above definitions also for jobs

and sets of jobs, respectively.

Definition 1.3 For any instance J and parallelism parameter g ≥ 1, OPT (J) denotes the

cost of an optimal solution, that is, a solution in which the total busy time of the machines

is minimized.

The next observation gives two immediate lower bounds for the cost of any solution.

Observation 1.1 For any instance J and parallelism parameter g ≥ 1, the following bounds

hold:

• The parallelism bound: OPT (J) ≥ len(J)
g

.

• The span bound: OPT (J) ≥ span(J).

The parallelism bound holds since g is the maximum parallelism that can be achieved in any

solution. The span bound holds since at any time t ∈ ∪J at least one machine is working.

W.l.o.g., we assume that the interval graph induced by the jobs is connected; otherwise, the

problem can be solved by considering each connected component separately. Clearly, in any

optimal solution, no machine is busy during intervals with no active jobs. As mentioned in

5

Subsection 1.1 w.l.o.g. we assume that each machine is busy along a contiguous interval.

Given any solution we denote by Ji the set of jobs assigned to machineMi by the solution. As

explained in Section 1.4, the cost ofMi is the length of its busy interval, i.e. busyi = span(Ji).

2 Approximation algorithm for the general case

In this section we present an algorithm for general instances and show that its approximation

ratio is between 3 and 4.

2.1 Algorithm FirstFit

Algorithm FirstFit schedules the jobs greedily by considering them one after the other, from

longest to shortest. Each job is scheduled to the first machine it can fit.

1. Sort the jobs in non-increasing order of length, i.e., len(J1) ≥ len(J2) ≥ . . . ≥
len(Jn).

2. Consider the jobs by the above order: assign the next job, Jj, to the first

machine that can process it, i.e., find the minimum value of i ≥ 1 such that,

at any time t ∈ Jj, Mi is processing at most g − 1 jobs. If no such machine

exists, then open a new machine for Jj.

2.2 Analysis of FirstFit

2.2.1 Upper Bound

We show that algorithm FirstFit is a 4-approximation algorithm. Formally,

Theorem 2.1 For any instance J ,

FirstF it(J) ≤ 4 ·OPT (J).

6

The proof is based on the following observation depicted in Figure 1.

Machine Mi

|si,k(J)| = g
≥ len(J)

≥ len(J)

≥ len(J)

≥ len(J)

Machine Mk

ti,k(J)

Job J

Fig. 1. Basic observation

Observation 2.2 Let J be a job assigned to machine Mi by FirstFit, for some i ≥ 2.

For any machine Mk, (k < i), there is at least one time ti,k(J) ∈ J and a set si,k(J) of

g jobs assigned to Mk such that, for every J ′ ∈ si,k(J), it holds that (a) ti,k(J) ∈ J ′, and

(b) len(J ′) ≥ len(J).

Proof: In order to prove property (a), assume by contradiction that for any t ∈ J the

machine Mk is processing at most g − 1 jobs. Since the algorithm assigns jobs to machines

incrementally (i.e. it never un-assigns jobs), this property was true also when FirstFit sched-

uled job J . Thus, J should have been assigned to Mk by FirstFit, if it was not already

assigned to a machine with smaller index. A contradiction to the fact that J is assigned to

Mi. Property (b) follows from property (a) and the fact that the jobs are considered by the

algorithm in a non-increasing order of their lengths.

Now we present an overview of the upper bound analysis. The proof combines the span

bound and the parallelism bound given in Observation 1.1 with the following analysis. Using

Observation 2.2 we relate the cost incurred by FirstFit for the jobs in Ji+1 to len(Ji).

This relates the overall cost incurred by FirstFit for the jobs in J \ J1 to OPT , using the

parallelism bound. Then we relate the cost incurred by FirstFit for the jobs in J1 to OPT ,

using the span bound. We now proceed to the details of the proof.

For two distinct machines Mi and Mk, where k < i, by choosing a value among the possible

values for ti,k(J), we obtain a pair of functions ti,k : Ji 7→ ∪Jk, and si,k : Ji 7→ 2Jk . The

inverse of ti,k is defined naturally, as follows. For any time t ∈ ∪Jk, t
−1
i,k (t) is the set of all

jobs J ∈ Ji such that ti,k(J) = t. For any job J ∈ Jk we define t−1
i,k (J) =

∪
t∈J t

−1
i,k (t). We use

ti (resp. si) as a shorthand for ti,i−1 (resp. si,i−1); moreover, we omit the index i whenever it

7

is clear from the context and simply write t (resp. s). In particular, if J ∈ Ji the index i is

not needed in ti(J), and we use for short t(J).

The following key lemma is needed in the proof of Theorem 2.1:

Lemma 2.3 For any i ≥ 1,

len(Ji) ≥
g

3
span(Ji+1).

Proof: Consider the maximal subset J ′
i+1 of proper intervals of Ji+1, obtained by removing

any job that is completely contained in another job. By this construction we have ∀J, J ′ ∈
J ′

i+1, J * J ′ and ∪J ′
i+1 = ∪Ji+1, thus span(J ′

i+1) = span(Ji+1). It follows that ∀J, J ′ ∈ J ′
i+1

J starts before J ′ if and only if J ends before J ′. Denote by ≺ the total order on J ′
i+1 implied

by the start (or completion) times of its jobs.

T

J ′
i+1

J ′
i

Fig. 2. Lemma 2.3 setting

Let T = {t(J)|J ∈ J ′
i+1}. Let also J ′

i =
∪

J∈J ′
i+1

s(J). Note that J ′
i ⊆ Ji. By Observation

2.2, each t ∈ T is contained in at least g jobs of J ′
i ; on the other hand, by the algorithm, t

is contained in at most g jobs of Ji. Therefore, each t ∈ T is contained in exactly g jobs of

J ′
i (see Figure 2).

It is easy to show that J ′
i can be partitioned into exactly g sets J ′

i,1,J ′
i,2, ...,J ′

i,g such that each

set J ′
i,l is an independent set with respect to intersection, or in other words an independent

set of the interval graph. This can be done by considering the g threads of execution of

machine Mi, and by scheduling the jobs of J ′ to these threads.

Now, let us consider a job J ′ ∈ J ′
i,l for some 1 ≤ l ≤ g (see Figure 3). By the construction,

J ′ ∩ T ̸= ∅, therefore t−1(J ′) ̸= ∅. Let J ′′ (resp. J ′′′) be the smallest (resp. biggest) job in

8

T
∩

J′

J′

J′′ J′′′
Machine i + 1

Machine i

Fig. 3. Analysis of a job J ′ assigned to machine Mi

t−1(J ′) with respect to the relation ≺. It is easy to conclude that

span(t−1(J ′)) ≤ len(J ′) + len(J ′′) + len(J ′′′).

Moreover, len(J ′) ≥ max(len(J ′′), len(J ′′′)) because J ′ ∈ s(J ′′) ∩ s(J ′′′) . Therefore:

span(t−1(J ′)) ≤ 3len(J ′).

Now, we use the union bound and sum up the above for all the jobs J ′ ∈ J ′
i,l to get

span(
∪

J ′∈J ′
i,l

t−1(J ′)) ≤
∑

J ′∈J ′
i,l

span(t−1(J ′))

≤ 3
∑

J ′∈J ′
i,l

len(J ′) = 3 · len(J ′
i,l). (1)

We note that any set J ′
i,l contains all the points of T . Thus,∪

J ′∈J ′
i,l

t−1(J ′) = J ′
i+1 (2)

Combining (1) and (2) we conclude that span(J ′
i+1) ≤ 3·len(J ′

i,l). Summing for all g possible

values of l, we have that

g · span(Ji+1) = g · span(J ′
i+1)

≤ 3
g∑

l=1

len(J ′
i,l) = 3 · len(J ′

i) ≤ 3 · len(Ji)

Combining the span bound and Lemma 2.3 we can now complete the analysis of the algo-

rithm.

9

Proof of Theorem 2.1: By definition, all the jobs in Ji+1 are assigned to one machine, i.e.

Mi+1. For such a set the cost of the assignment is exactly its span. Thus, FirstF it(Ji+1) =

busyi+1 = span(Ji+1) ≤ 3
g
len(Ji). Let m ≥ 1 be the number of machines used by FirstFit.

Then

m∑
i=2

FirstF it(Ji) =
m−1∑
i=1

FirstF it(Ji+1)

≤ 3

g

m−1∑
i=1

len(Ji)

<
3

g

m∑
i=1

len(Ji) =
3

g
len(J) ≤ 3 ·OPT (J)

where the last inequality follows from the parallelism bound.

Now, using the span bound, we have that FirstF it(J1) = busy1 = span(J1) ≤ span(J) ≤
OPT (J). Therefore, FirstF it(J) ≤ 4 ·OPT (J) .

2.2.2 Lower Bound

Theorem 2.4 For any ε > 0, there are infinitely many instances J having infinitely many

input sizes, such that FirstFit(J) > (3− ε) ·OPT (J) .

g copies

g − 1 jobs

g − 1 jobs

g − 1 jobs

t = 0
t = 1 t = 3 − 2ε′

t = 1 − ε′

t = 2 − ε′

t = 2 − 2ε′

Fig. 4. Instance for the proof of the lower bound

Proof: Consider the instance J depicted in Figure 4. For this instance OPT uses one

machine in the interval [0, 1], one machine in the interval [2−2ε′, 3−2ε′], and g−1 machines

in the interval [1 − ε′, 2 − ε′], for a total cost of OPT (J) = g + 1. In contrast, FirstFit

may use g machines in the interval [0, 3− 2ε′] for a total cost of FirstFit(J) = (3− 2ε′)g =

10

(3−2ε′) g
g+1

OPT (J). Choosing g and ε′ appropriately (for example, ε′ = ε/4 and g ≥ 6/ε−1)

we get that FirstFit(J) > (3− ε)OPT (J) .

Combining Theorems 2.1 and 2.4, we get:

Theorem 2.5 The approximation ratio of FirstFit is between 3 and 4.

3 Improved Approximations for Special Cases

3.1 Proper Interval Graphs

In this section we consider instances in which no job interval is properly contained in another.

The intersection graphs for such instances are known as proper interval graphs. The simple

greedy algorithm consists of two steps. In the first step, the jobs are sorted by their starting

times (note that in a proper interval graph this is also the order of the jobs by completion

times). In the second step the jobs are assigned to machines greedily in a NextFit manner;

that is, each job is added to the currently filled machine, unless its addition is invalid, in

which case a new machine is opened.

Greedy Algorithm for Proper Interval Graphs

1. Sort the jobs in non-decreasing order by their starting points, i.e., s1 ≤ s2 ≤
. . . ≤ sn.

2. Scan the list of jobs in the above order. If possible, assign the next job to

the currently filled machine; else (adding the job forms a (g + 1)-clique in the

currently filled machine), open a new machine for the currently scheduled job.

Theorem 3.1 The Greedy algorithm yields a 2-approximation for proper interval graphs.

Proof: Let Nt denote the number of jobs active at time t. Also, let MO
t denote the number

of machines active at time t in an optimal schedule, and let MA
t denote the number of

machines active at time t in the schedule output by the algorithm.

Claim 1 For any t, Nt ≥ (MA
t − 2)g + 2.

11

Proof: For a given t > 0, let m = MA
t . At the time the m-th machine is opened, there are

m− 1 additional active machines. The first one processes at least one job, and the following

m−2 machines process exactly g jobs each. Suppose that the first machine processes at time

t job J . Any job J ′assigned to another machine starts after J and ends after J , since the

graph is proper; thus,J ′ is active at time t. Since there are m active machines at time t, the

same count of (m− 2)g + 2 jobs is still valid (additional jobs may have started). Therefore

Nt ≥ (m− 2)g + 2.

Claim 2 For any t,MO
t ≥ MA

t − 1

Proof: Clearly, for any t ≥ 0, MO
t ≥ ⌈Nt/g⌉. Using Claim 1, we get that

MO
t ≥ ⌈Nt/g⌉ ≥

⌈
((MA

t − 2)g + 1)/g
⌉
≥ MA

t − 1.

The cost of the entire schedule of an instance J is obtained by taking the integral of MA
t

over all values of t in [0, span(J)]; thus, we have that ALG(J) ≤ OPT (J) + span(J). In

particular, since OPT (J) ≥ span(J), this gives the statement of the theorem.

We note that by a slight ranked-shift of the jobs in the middle column of the instance

described in Figure 4, we get a proper interval graph, for which algorithm FirstFit provides

an approximation ratio arbitrarily close to 3.

3.2 Bounded Length Instances

Given an instance J of our problem, recall that len(Jj) = cj − sj is the length of Jj. We

now consider instances in which for all 1 ≤ j ≤ n, len(Jj) ∈ [1, d], where d ≥ 1 is some fixed

constant. We further assume that the start times of all jobs are integral. 2

Algorithm Bounded Length accepts as parameter some ε > 0. In Step 2. of the algorithm

we use guessing. By this we refer to enumeration over the set of possible values, using a

polynomial number of steps. Also, in Step 2(e) we solve the b-matching problem, defined as

follows. Given a graph G = (V,E) with degree constraints b : V → N for the vertices, a

b-matching is a subset of edges M ⊆ E such that for all v ∈ V the number of edges in M

2 Such instances show up, e.g., in optical networks, where the jobs represent lightpaths between

pairs of nodes (see Section 4).

12

Bounded Length Algorithm

1. Partition the input to segments as follows. All intervals Ij for which sj ∈
[d · (r − 1), d · r) for some integer r ≥ 1 are assigned to segment r. Let S(J)

be the resulting set of segments and R = |S(J)|.
2. For each segment 1 ≤ r ≤ R do

(a) Guess kr ≥ 1, the number of machines in some optimal schedule for seg-

ment r, and OPT r, the minimum total busy time of these machines.

(b) Guess the vector of busy intervals of the machines allotted to segment r,

where the busy interval of machine i is given by (s(Mi), busyi): s(Mi) ∈
[d · (r−1), d ·r) is the start time of the busy interval, and busyi = (1+ε)m,

for some 0 ≤ m ≤ ⌈log1+ε(2d)⌉, is the length of the busy interval.

(c) Guess a partition of the intervals in segment r to independent sets (IS),

i.e., the vector containing the number of ISs of each type assigned to the

machines. Let Nr ≤ kr · g be the total number of ISs in the solution.

(d) Construct a bipartite graph B = (U, V,E), where U = (M1, . . . ,Mkr) and

V = (IS1, . . . , ISNr). There is an edge (Mi, ISh) if ISh can be scheduled

on Mi. For any vertex Mi ∈ U let b(Mi) = g, and for any ISh ∈ V let

b(ISh) = 1.

(e) Solve for B the maximum b-matching problem, and assign the jobs to the

machines as determined by the matching.

incident to v is at most b(v). The b-matching problem is to find a b-matching M of maximum

size. The problem is known to be solvable in polynomial time (see, e.g., [11]).

Theorem 3.2 The Bounded Length Algorithm is a polynomial time (2 + ε)-approximation

algorithm for the scheduling problem.

We use in the proof the next lemma.

Lemma 3.3 Let OPT (J) be the value of an optimal solution for J , and let OPT (S(J))

be the value of an optimal solution for J in which jobs from different segments in S(J) are

not assigned to the same machine. Then OPT (S(J)) ≤ 2 ·OPT (J).

Proof: The proof is by construction. Given an optimal solution for J , construct a solution

in which jobs from different segments are not assigned to the same machine, such that the

total busy time of the resulting schedule is at most twice the total busy time of the given

schedule. For each machine in the optimal solution that spans over jobs from k adjacent

13

segments in S(J), simply replace the machine by k machines, each processing only the jobs

of a single segment.

Claim 3 Any single machine Mi of OPT with busy time busyi is replaced by a set of ma-

chines having total busy time at most 2busyi.

Proof: Let S1, S2, . . . be the segments formed in Step 1., ordered from left to right. Consider

a machine Mi of OPT , and assume that it covers jobs from Si1 , . . . , Si1+k−1. It is therefore re-

placed by k machines, each processing the jobs of a different segment. Denote these machines

by Mi1 , . . . ,Mi1+k−1. Note that the busy intervals of two adjacent machines may intersect.

However, for any r ∈ {i1, . . . , i1 + k − 3}, the busy intervals of Mr,Mr+2 do not intersect.

This follows from the fact that the length of any interval is at most d. In other words, the

completion time of any job in Jr is in [d · (r − 1), d · (r + 1)).

By the above discussion, the total busy time of the machine Mi is at least the total busy time

of the even-indexed replacing machines, as well as at least the busy time of the odd-indexed

replacing machines. Formally, assume w.l.o.g that k is even, then busyi ≥ busyi1 + busyi1+2+

. . . + busyi1+k−2, and also busyi ≥ busyi1+1 + busyi1+3 + . . . + busyi1+k−1. Sum up the two

inequalities to get 2busyi ≥
∑i1+k−1

ℓ=i1
busyℓ as required.

The statement of the lemma follows by summing up the busy times of all the machines

replacing the machines of OPT .

Proof of Theorem 3.2:We first show that, given any ε > 0, Step 2. of the Bounded Length

algorithm yields in polynomial time a (1 + ε)-approximation for the minimum busy time of

segment r, for any 1 ≤ r ≤ R. Formally, let busyoi be the busy time of Mi in some optimal

schedule for segment r, and suppose that (1 + ε)h ≤ busyoi ≤ (1 + ε)h+1, then by taking

busyi = (1 + ε)h+1 we increase the busy time of Mi at most by factor 1 + ε. Also, given a

correct guess of the vector of busy intervals of the machines in segment r and the partition of

the jobs in segment r to independent sets, the algorithm finds in B a b-matching in which all

the IS vertices are matched. Thus, using Lemma 3.3, and taking in the algorithm ε′ = ε/2,

we get a (2 + ε)-approximation ratio.

For the running time of the algorithm, we note that the optimal total busy time for any

segment 1 ≤ r ≤ R satisfies 1 ≤ OPT r ≤ n · d and can be guessed within factor 1 + ε in

O(lnn/ε) steps. Similarly, the total number of machines assigned to segment r is at most n,

and can be guessed in O(log n) steps. Indeed, we can obtain this way the number of machines

used in some optimal solution, by guessing a value OPT r ≤ k ≤ 2OPT r and setting the busy

intervals of machines OPT r + 1, . . . , k to be of length zero. Also, since for any 1 ≤ i ≤ k,

14

s(Mi) can get at most d values, and busyi can get log1+ε(2d) = O(ln d/ε) possible values

(since all job lengths are in [1, d]), the busy intervals vector can be guessed in polynomial

time.

Finally, the vector of independent sets assigned to the machines in segment r can be guessed

in polynomial time. Indeed, any independent set consists of at most d intervals. The number

of possible starting points for these intervals is d. Also, for a given independent set , ISℓ, let

s(ISℓ) be the earliest start time of any interval in ISℓ, and let c(ISℓ) be the latest completion

time of any interval in ISℓ, then the stretch of ISℓ is St(ISℓ) = c(ISℓ)− s(ISℓ). In guessing

the stretch values for the independent sets, we round up the stretch of any IS to the nearest

integral power of 1 + ε. Thus, the number of possible stretch values is O(ln d/ε). For each

independent set ISℓ, we keep the start times of all intervals, as well as the stretch of ISℓ,

i.e., the vector (si1 , . . . sit , St(ISℓ)), where 1 ≤ t ≤ d. The number of starting points for the

intervals in ISℓ is given by

d∑
t=1

(
d+ t− 1

t− 1

)
≤ d

(
2d− 1

d− 1

)
≤
(
(2d− 1)e

d− 1

)d−1

≤ d(2e)d,

where e is the base of the natural logarithm. Since the stretch of any independent set can take

O(ln d/ε) values, we have that the number of possible IS vectors is O(d · (2e)d ln d/ε), which
is a constant. Hence,we can guess in polynomial time the set of ISs assigned to the machines

of segment r. Clearly, all other steps of the algorithm can be implemented in polynomial

time.

4 Application to Optical Networks

4.1 Background

All-optical networks have been widely studied in recent years, due to the promise of data

transmission rates several orders of magnitudes higher than current networks [14,16]. The

focus of optimality criteria lies in the hardware costs. This is modeled by considering the

utilization of the electronic switching units (Add-Drop Multiplexers, or ADMs) and the

signal regenerators. The communication is done by lightpaths, which are simple paths in the

network. A lightpath connecting nodes u and v is using one ADM in each of its endpoints

u and v, and one regenerator in each intermediate node. An ADM at a node can serve two

lightpaths of the same wavelength, provided they do not have any edge in common.

15

Often, the traffic supported by the network requires transmission rates which are lower than

the full wavelength capacity; thus, the network operator has to be able to put together (or,

groom) low-capacity demands into the high capacity fibers. Taking g to be the grooming

factor, for some g ≥ 1, this can be viewed as assigning colors to the lightpaths so that at

most g of them can share one edge.

In terms of ADMs, this means that at most g lightpaths of the same wavelength can enter

through the same edge to any node and use the same ADM (thus saving g−1 ADMs). Simi-

larly, in terms of regenerators, if g lightpaths of the same wavelength need such a component

at the same node, they can share a single regenerator (thus saving g − 1 regenerators). The

goal is to minimize the cost measured by α · |REGENERATORs|+ (1− α) · |ADMs|, for
any value 0 ≤ α ≤ 1. This grooming prblem has become central in optimizing switching costs

for optical networks.

The notion of traffic grooming was introduced in [12] for ring topologies. The case where

α = 0, namely, minimizing the number of ADMs, is the topic of many previous studies.

Our results for scheduling with bounded parallelism apply to the case where α = 1, where

the goal is to minimize the number of regenerators. The ADMs minimization problem was

shown to be NP-complete in [6] for rings and for arbitrary values of g ≥ 1. An algorithm with

approximation ratio of 2 ln g, for any fixed g ≥ 1 on a ring topology, was given in [10]. The

regenerator cost is considered in [5,4] although with a different cost measure. The problem

of minimizing the number of regenerators was shown to be NP-complete in [8] (see also in

[19]). The paper [8] also presents an approximation algorithm for the problem of minimizing

every linear combination of the total number of ADMs and regenerators. The algorithm is

polynomial in the input size (and in g) and yields an approximation ratio of O(
√
g log n).

4.2 Results

Given a network with a path topology, a grooming factor g ≥ 1 and a set of lightpaths {pj =
(aj, bj)|j = 1, ..., n}, we need to color the lightpaths such that the number of regenerators is

minimized. This yields the following instance of our scheduling problem. The set of jobs is

{Jj = [aj + 1/2, bj − 1/2]|j = 1, ..., n}, and the parallelism parameter is g. Grooming up to

g lightpaths in the optical network implies that the corresponding jobs are scheduled on the

same machine, and vice versa. In other words, different colors in the optical network instance

correspond to different machines in the scheduling problem instance, and a regenerator at

node i corresponds to the interval [i−1/2, i+1/2]. A lightpath uses a given regenerator if and

16

only if the corresponding job contains the interval corresponding to the given regenerator.

Therefore, the cost of a coloring of the lightpaths is equal to the cost of the schedule of the

corresponding set of jobs.

Thus, we have the following results for the grooming problem. (i) A 4-approximation algo-

rithm for an arbitrary set of lightpaths (following Section 2); (ii) a 2-approximation algorithm

for instances where any two lightpaths intersect (this follows from the algorithm for cliques

in the Appendix, and also from [8]; see discussion in Section 1.3), (iii) a 2-approximation al-

gorithm for instances where no lightpath is properly contained in another (following Section

3.1), and (iv) a (2+ε)- approximation algorithms for instances in which the ratio between the

lengths of any two lightpaths is bounded by d, where d ≥ 1 is some fixed constant (following

Section 3.2).

References

[1] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to

approximating resource allocation and scheduling. Journal of the ACM, pages 1–23, 2000.

[2] S. Bhatia, J. Chuzhoy, A. Freund, and J. Naor. Algorithmic aspects of bandwidth trading.

ACM Transactions on Algorithms, 3(1), 2007.

[3] P. Brucker. Scheduling Algorithms, 5th ed. Springer, 2007.

[4] S. Chen, I. Ljubic, and S. Raghavan. The regenerator location problem. Networks, 55(3):205–

220, 2010.

[5] S. Chen and S. Raghavan. The regenerator location problem. In Proceedings of the International

Network Optimization Conference (INOC), 2007.

[6] A. L. Chiu and E. H. Modiano. Traffic grooming algorithms for reducing electronic multiplexing

costs in wdm ring networks. Journal of Lightwave Technology, 18(1):2–12, January 2000.

[7] J. Y-T. Leung (ed.). Handbook of Scheduling: Algorithms, Models, and Performance Analysis.

CRS Press, 2004.

[8] M. Flammini, G. Monaco, L. Moscardelli, M. Shalom, and S. Zaks. Approximating the traffic

grooming problem with respect to adms and oadms. In 14th International European Conference

on Parallel and Distributed Computing (EuroPar), Las Palmas de Gran Canaria, Spain, August

26-29, 2008.

17

[9] M. Flammini, G. Monaco, L. Moscardelli, M. Shalom, and S. Zaks. Optimizing regenerator

cost in traffic grooming. Submitted for publication, 2010.

[10] M. Flammini, L. Moscardelli, M. Shalom, and S. Zaks. Approximating the traffic grooming

problem. In ISAAC, pages 915–924, 2005.

[11] H. N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected

network flow problems. In STOC, pages 448–456, 1983.

[12] O. Gerstel, R. Ramaswami, and G. Sasaki. Cost effective traffic grooming in wdm

rings. In INFOCOM’98, Seventeenth Annual Joint Conference of the IEEE Computer and

Communications Societies, 1998.

[13] D. Gijswijt, V. Jost, and M. Queyranne. Clique partitioning of interval graphs with submodular

costs on the cliques. RAIRO-Operations Research-Recherche Opérationelle, 41(3):275–287,

2007.

[14] P. E. Green. Fiber-Optic Communication Networks. Prentice Hall, 1992.

[15] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir. Real-time scheduling to minimize

machine busy times. Submitted, 2010.

[16] R. Klasing. Methods and problems of wavelength-routing in all-optical networks. In Proceeding

of the MFCS’98 Workshop on Communication, August 24-25, Brno, Czech Republic, pages 1–9,

1998.

[17] M. Y. Kovalyov, C. T. Ng, and T. C. E. Cheng. Fixed interval scheduling: Models,

applications, computational complexity and algorithms. European Journal of Operational

Research, 178(2):331–342, 2007.

[18] E. Lawler, J.K. Lenstra, A.H.G.R. Kan, and D. Shmoys. Sequencing and scheduling: Algorithms

and complexity. S. C. Graves, A. H. G. Rinnooy Kan, and P. Zipkin (eds.), Handbooks in

Operations Research and Management Science, 4, 1993.

[19] P. Winkler and L. Zhang. Wavelength assignment and generalized interval graph coloring. In

SODA, pages 830–831, 2003.

Appendix: Approximation Algorithm for Cliques

If all jobs of an instance intersect with each other, then the resulting interval graph is a

clique. In this section we present a 2-approximation algorithm for this class. For a given

clique C, select an arbitrary point t which belongs to all the intervals. Such a point must

18

exist by the definition of a clique in an interval graph. For a fixed t ≥ 0, for each job j, let

δj = max(t− sj, cj − t) be the maximal distance of an endpoint of j from the point t. Also,

let ∆ = maxj∈C δj (see Figure 5).

Fig. 5. The left-right partition of a clique for an arbitrary intersection point t.

Scheduling Algorithm for a Clique

1. Sort the jobs in the clique C by their distance from t such that δ1 ≥ . . . ≥ δ|C|.

2. While not all jobs are assigned to machines, open a new machine and assign

to it the next g jobs (the last machine may be assigned less than g jobs).

The algorithm schedules the jobs on
⌈
|C|
g

⌉
machines: the g jobs with the maximal δj values

are assigned to M1, and so on.

Theorem 4.1 Let OPT (C) be the total busy time in an optimal solution for C, then the

total busy time of the machines used by the algorithm is at most 2 ·OPT (C).

Proof: Let m =
⌈
|C|
g

⌉
be the number of machines used by the algorithm. Clearly, the

number of machines used in any optimal solution is m′ ≥ m.

For any machine Mi in some optimal solution, let δiO = max{j∈Ji} δj, where Ji is the set of

jobs assigned toMi. Sort the machines of the optimal solution such that δ1O ≥ δ2O ≥ . . . ≥ δm
′

O .

Since Mi processes at least one job of length at least δiO, it holds that busyi ≥ δiO. Thus,

OPT (C) ≥ ∑m′

i=1 δ
i
O.

Similarly, for any machineMi used by the algorithm, let δiA = max{j∈Ji} δj. Sort the machines

used by the algorithm such that δ1A ≥ δ2A ≥ . . . ≥ δmA . Note that this is also the order in which

the machines were filled. The busy interval of Mi is therefore contained in [t − δiA, t + δiA],

implying that busyi ≤ 2δiA, and thus, ALG(C) ≤ 2
∑m

i=1 δ
i
A. The following claim completes

the proof.

19

Claim 4
m∑
i=1

δiA ≤
m′∑
i=1

δiO.

Proof: It suffices to show that for any 1 ≤ i ≤ m, δiA ≤ δiO. For i = 1, both δ1A and δ1O
are equal to ∆. For any i > 1, note that the i− 1 first machines filled by the algorithm are

assigned the g(i− 1) jobs with the maximal δj values. Therefore, the remaining n− g(i− 1)

jobs have the minimal maximal distance from point t among any set of n − g(i − 1) jobs.

This distance is exactly δiA. In particular, the set of n−g(i−1) jobs that are assigned on the

remaining machines in the optimal solution has at least the same maximal distance from t.

Thus, ∀i, δiA ≤ δiO.

20

