Minimizing Total Busy Time in Parallel Scheduling with Application to Optical Networks *,**

Michele Flammini ${ }^{\text {a }}$ Gianpiero Monaco ${ }^{\mathrm{f}}$ Luca Moscardelli ${ }^{\text {b }}$
Hadas Shachnai ${ }^{\text {c }}$ Mordechai Shalom ${ }^{\text {d }}$ Tami Tamir ${ }^{e}$ Shmuel Zaks ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Computer Science, University of L'Aquila, Italy. ${ }^{\mathrm{b}}$ Department of Science, University of Chieti-Pescara, Pescara, Italy.
${ }^{\text {c }}$ Department of Computer Science, The Technion, Haifa, Israel. ${ }^{\mathrm{d}}$ Tel-Hai Academic College, 12210 Upper Gallilee, Israel.
${ }^{\mathrm{e}}$ School of Computer Science, The Interdisciplinary Center, Herzliya, Israel.
${ }^{\mathrm{f}}$ Mascotte joint project, INRIA/CNRS/UNSA, Sophia Antipolis, France

Abstract

We consider a scheduling problem in which a bounded number of jobs can be processed simultaneously by a single machine. The input is a set of n jobs $\mathcal{J}=$ $\left\{J_{1}, \ldots, J_{n}\right\}$. Each job, J_{j}, is associated with an interval $\left[s_{j}, c_{j}\right]$ along which it should be processed. Also given is the parallelism parameter $g \geq 1$, which is the maximal number of jobs that can be processed simultaneously by a single machine. Each machine operates along a contiguous time interval, called its busy interval, which contains all the intervals corresponding to the jobs it processes. The goal is to assign the jobs to machines so that the total busy time is minimized. The problem is known to be NP-hard already for $g=2$. We present a 4 -approximation algorithm for general instances, and approximation algorithms with improved ratios for instances with bounded lengths, for instances where any two intervals intersect, and for instances where no interval is properly contained in another. Our study has application in optimizing the switching costs of optical networks.

1 Introduction

1.1 Problem Statement

Job scheduling on parallel machines has been widely studied (see, e.g., the surveys in $[3,7]$). In particular, much attention was given to interval scheduling [18], where jobs are given as intervals on the real line, each representing the time interval in which a job should be processed; each job has to be processed on some machine, and it is commonly assumed that a machine can process a single job at any time.

In this paper we consider interval scheduling with bounded parallelism. Formally, the input is a set of n jobs $\mathcal{J}=\left\{J_{1}, \ldots, J_{n}\right\}$. Each job, J_{j}, is associated with an interval $\left[s_{j}, c_{j}\right]$ in which it should be processed. Also, given is the parallelism parameter $g \geq 1$, which is the maximal number of jobs that can be processed simultaneously by a single machine. At any given point t in time a machine M_{i} is said to be busy if there is at least job J_{j} scheduled to it such that $t \in\left[s_{j}, c_{j}\right]$, otherwise the machine is said to be idle at time t. We call the time period in which a machine M_{i} is busy, its busy period and denote its length by busy. The goal is to assign the jobs to machines such that the total busy time of the machines, given by $\sum_{i} b u s y_{i}$, is minimized. W.l.o.g the busy period of a machine M_{i} is contiguous, because otherwise we can divide the busy period to contiguous intervals and assign the jobs of each contiguous interval to a different machine. Obviously this will not change to total busy time. Therefore we say that a machine M_{i} has a busy interval, which starts at the minimum start time of any job scheduled on M_{i} and ends at the maximum completion time of any of these jobs. Note that the number of machines to be used is part of the output of the algorithm (and can take any integral value $m \geq 1$).

Our study is motivated from a central problem in optical network design, namely, assign-

[^0]ing wavelengths to a given set of lightpaths so as to minimize the total switching cost of the network (we elaborate on that in Section 4). In fact, our scheduling problem was first considered in [19] as a problem of fiber minimization. The paper shows that the problem is NP-hard already for $g=2$.

The problem of interval scheduling with bounded parallelism naturally arises in systems where service costs depend on the busy times (or, utilization) of the machines/servers. We note that when the objective is to minimize the number of machines needed to complete all jobs our problem is polynomially solvable. Indeed, given an instance of the problem, we can initially solve the minimum coloring problem on interval graphs; then, we scan the jobs by color classes and schedule the next g colors classes on a single machine. Thus, a k-coloring induces a schedule on $\lceil k / g\rceil$ machines.

Throughout the paper, we refer to our scheduling problem also as the following graph theoretic problem. An interval graph is the intersection graph of a set of intervals on the real line. It has one vertex for each interval in the set, and an edge between every pair of vertices corresponding to intersecting intervals. In our settings, each vertex corresponds to a job, and there is an edge between two jobs whose processing times overlap. Let $H=\left(\mathcal{J}_{H}, \mathcal{E}_{H}\right)$ be a subgraph of an interval graph, induced by the set of vertices \mathcal{J}_{H}, then the cost of H is given by $\max _{j \in \mathcal{J}_{H}} c_{j}-\min _{j \in \mathcal{J}_{H}} s_{j}$. Our problem can be stated as the following graph partitioning problem. Given an interval graph, partition its vertices into subsets (i.e., assign the jobs to machines) such that: (i) the maximal size of a clique in each set is at most g, for some $g \geq 1$, and $(i i)$ the total cost of the subgraphs is minimized.

1.2 Related Work

Some of the earlier work on interval scheduling considers the problem of scheduling a feasible subset of jobs whose total weight is maximized, i.e., a maximum weight independent set (see, e.g., [1] and the comprehensive survey in [17]). There has been earlier work also on the problem of scheduling all the jobs on a set of machines so as to minimize the total cost (see, e.g., [2]), but in these works the cost of scheduling each job is fixed. In our problem, the cost of scheduling each of the jobs depends on the number of other jobs scheduled on the same machine in the corresponding time interval; thus, it may change over time and among different machines.

Our study relates also to batch scheduling of conflicting jobs, where the conflicts are given as
an interval graph. In batch scheduling ${ }^{1}$ a set of jobs can be processed jointly. All the jobs in the batch start simultaneously, and the completion time of a batch is the last completion time of any job in the batch. (For known results on batch scheduling, see e.g., [3].) Our scheduling problem differs from batch scheduling in several aspects. While each machine can process g jobs simultaneously, for some $g \geq 1$, the jobs need not be partitioned to batches, i.e., each job can start at different time. Also, while in known batch scheduling problems the set of machines is given, we assume that any number of machines can be used for the solution. Finally, while common measures in batch scheduling refer to the maximum completion time of a batch, or a function of the completion times of the jobs, we consider the total busy times of the machines.

Our approximation algorithm for proper interval graphs (see in Section 3) solves as a subroutine a clique partitioning problem in interval graphs. There has been earlier work, more generally, on the problem of partitioning a graph to cliques, however, the objective functions are different than ours (see, e.g., [13]).

Finally, as mentioned above, the complexity of our scheduling problem was studied in [19]. We are not aware of earlier studies that present approximation algorithms for this problem.

1.3 Our contribution

In Section 2 we give a 4-approximation algorithm for general inputs. In Section 3 we present algorithms with improved ratios for some special cases. Specifically, we give 2-approximation algorithm for instances where no interval is properly contained in another (i.e., the input forms a proper interval graph), and a $(2+\varepsilon)$-approximation for bounded length instances. In the Appendix we give a 2-approximation algorithm for instances where any two intervals intersect. While an algorithm with the same approximation ratio was given in [8], the present algorithm as well as the analysis are different. We believe it may find uses in solving our problem for other subclasses of instances. Our results have immediate consequences on the regenerator minimization problem in optical networks when the topology under consideration is a path (see Section 4). In [9] we generalize the results implied by this work to any network topology.

Recently, our 4-approximation algorithm was extended to a 5 -approximation algorithm for general instances, where each job has a release time, a due date, a processing time and a

[^1]demand for machine capacity [15]. The paper gives better bounds and exact algorithms for several special cases, including proper interval graphs, intervals forming a clique and laminar families of intervals. In particular, for the spacial case of a clique the paper shows that our problem admits a polynomial time approximation scheme.

1.4 Preliminaries

Unless specified otherwise, we use lowercase letters for indices and upper case letters for jobs, time intervals and machines; also, calligraphic characters are used for sets of jobs, sets of intervals and sets of machines.

Definition 1.1 Given a time interval $I=[s, c]$, the length of I is $\operatorname{len}(I)=c-s$. This extends to a set \mathcal{I} of intervals; namely, the length of \mathcal{I} is len $(\mathcal{I})=\sum_{I \in \mathcal{I}} \operatorname{len}(I)$.

Definition 1.2 For a set \mathcal{I} of intervals we define the span of \mathcal{I} as $\operatorname{span}(\mathcal{I})=\operatorname{len}(\cup \mathcal{I})$.
Note that $\operatorname{span}(\mathcal{I}) \leq \operatorname{len}(\mathcal{I})$ and equality holds if and only if \mathcal{I} is a set of pairwise disjoint intervals. Because jobs are given by time intervals, we use the above definitions also for jobs and sets of jobs, respectively.

Definition 1.3 For any instance \mathcal{J} and parallelism parameter $g \geq 1, \operatorname{OPT}(\mathcal{J})$ denotes the cost of an optimal solution, that is, a solution in which the total busy time of the machines is minimized.

The next observation gives two immediate lower bounds for the cost of any solution.
Observation 1.1 For any instance \mathcal{J} and parallelism parameter $g \geq 1$, the following bounds hold:

- The parallelism bound: $\operatorname{OPT}(\mathcal{J}) \geq \frac{\operatorname{len}(\mathcal{J})}{g}$.
- The span bound: $\operatorname{OPT}(\mathcal{J}) \geq \operatorname{span}(\mathcal{J})$.

The parallelism bound holds since g is the maximum parallelism that can be achieved in any solution. The span bound holds since at any time $t \in \cup \mathcal{J}$ at least one machine is working.
W.l.o.g., we assume that the interval graph induced by the jobs is connected; otherwise, the problem can be solved by considering each connected component separately. Clearly, in any optimal solution, no machine is busy during intervals with no active jobs. As mentioned in

Subsection 1.1 w.l.o.g. we assume that each machine is busy along a contiguous interval.
Given any solution we denote by \mathcal{J}_{i} the set of jobs assigned to machine M_{i} by the solution. As explained in Section 1.4, the cost of M_{i} is the length of its busy interval, i.e. $b u s y_{i}=\operatorname{span}\left(\mathcal{J}_{i}\right)$.

2 Approximation algorithm for the general case

In this section we present an algorithm for general instances and show that its approximation ratio is between 3 and 4 .

2.1 Algorithm FirstFit

Algorithm FirstFit schedules the jobs greedily by considering them one after the other, from longest to shortest. Each job is scheduled to the first machine it can fit.

1. Sort the jobs in non-increasing order of length, i.e., $\operatorname{len}\left(J_{1}\right) \geq \operatorname{len}\left(J_{2}\right) \geq \ldots \geq$ $\operatorname{len}\left(J_{n}\right)$.
2. Consider the jobs by the above order: assign the next job, J_{j}, to the first machine that can process it, i.e., find the minimum value of $i \geq 1$ such that, at any time $t \in J_{j}, M_{i}$ is processing at most $g-1$ jobs. If no such machine exists, then open a new machine for J_{j}.

2.2 Analysis of FirstFit

2.2.1 Upper Bound

We show that algorithm FirstFit is a 4 -approximation algorithm. Formally,
Theorem 2.1 For any instance \mathcal{J},

$$
\text { FirstFit }(\mathcal{J}) \leq 4 \cdot O P T(\mathcal{J})
$$

The proof is based on the following observation depicted in Figure 1.

Fig. 1. Basic observation
Observation 2.2 Let J be a job assigned to machine M_{i} by FirstFit, for some $i \geq 2$. For any machine $M_{k},(k<i)$, there is at least one time $t_{i, k}(J) \in J$ and a set $s_{i, k}(J)$ of g jobs assigned to M_{k} such that, for every $J^{\prime} \in s_{i, k}(J)$, it holds that (a) $t_{i, k}(J) \in J^{\prime}$, and (b) $\operatorname{len}\left(J^{\prime}\right) \geq \operatorname{len}(J)$.

Proof: In order to prove property (a), assume by contradiction that for any $t \in J$ the machine M_{k} is processing at most $g-1$ jobs. Since the algorithm assigns jobs to machines incrementally (i.e. it never un-assigns jobs), this property was true also when FirstFit scheduled job J. Thus, J should have been assigned to M_{k} by FirstFit, if it was not already assigned to a machine with smaller index. A contradiction to the fact that J is assigned to M_{i}. Property (b) follows from property (a) and the fact that the jobs are considered by the algorithm in a non-increasing order of their lengths.

Now we present an overview of the upper bound analysis. The proof combines the span bound and the parallelism bound given in Observation 1.1 with the following analysis. Using Observation 2.2 we relate the cost incurred by FirstFit for the jobs in \mathcal{J}_{i+1} to $\operatorname{len}\left(\mathcal{J}_{i}\right)$. This relates the overall cost incurred by FirstFit for the jobs in $\mathcal{J} \backslash \mathcal{J}_{1}$ to $O P T$, using the parallelism bound. Then we relate the cost incurred by FirstFit for the jobs in \mathcal{J}_{1} to OPT, using the span bound. We now proceed to the details of the proof.

For two distinct machines M_{i} and M_{k}, where $k<i$, by choosing a value among the possible values for $t_{i, k}(J)$, we obtain a pair of functions $t_{i, k}: \mathcal{J}_{i} \mapsto \cup \mathcal{J}_{k}$, and $s_{i, k}: \mathcal{J}_{i} \mapsto 2^{\mathcal{J}_{k}}$. The inverse of $t_{i, k}$ is defined naturally, as follows. For any time $t \in \cup \mathcal{J}_{k}, t_{i, k}^{-1}(t)$ is the set of all jobs $J \in \mathcal{J}_{i}$ such that $t_{i, k}(J)=t$. For any job $J \in \mathcal{J}_{k}$ we define $t_{i, k}^{-1}(J)=\bigcup_{t \in J} t_{i, k}^{-1}(t)$. We use t_{i} (resp. s_{i}) as a shorthand for $t_{i, i-1}$ (resp. $s_{i, i-1}$); moreover, we omit the index i whenever it
is clear from the context and simply write t (resp. s). In particular, if $J \in \mathcal{J}_{i}$ the index i is not needed in $t_{i}(J)$, and we use for short $t(J)$.

The following key lemma is needed in the proof of Theorem 2.1:
Lemma 2.3 For any $i \geq 1$,

$$
\operatorname{len}\left(\mathcal{J}_{i}\right) \geq \frac{g}{3} \operatorname{span}\left(\mathcal{J}_{i+1}\right)
$$

Proof: Consider the maximal subset $\mathcal{J}_{i+1}^{\prime}$ of proper intervals of \mathcal{J}_{i+1}, obtained by removing any job that is completely contained in another job. By this construction we have $\forall J, J^{\prime} \in$ $\mathcal{J}_{i+1}^{\prime}, J \nsubseteq J^{\prime}$ and $\cup \mathcal{J}_{i+1}^{\prime}=\cup \mathcal{J}_{i+1}$, thus $\operatorname{span}\left(\mathcal{J}_{i+1}^{\prime}\right)=\operatorname{span}\left(\mathcal{J}_{i+1}\right)$. It follows that $\forall J, J^{\prime} \in \mathcal{J}_{i+1}^{\prime}$ J starts before J^{\prime} if and only if J ends before J^{\prime}. Denote by \prec the total order on $\mathcal{J}_{i+1}^{\prime}$ implied by the start (or completion) times of its jobs.

Fig. 2. Lemma 2.3 setting
Let $T=\left\{t(J) \mid J \in \mathcal{J}_{i+1}^{\prime}\right\}$. Let also $\mathcal{J}_{i}^{\prime}=\bigcup_{J \in \mathcal{J}_{i+1}^{\prime}} s(J)$. Note that $\mathcal{J}_{i}^{\prime} \subseteq \mathcal{J}_{i}$. By Observation 2.2, each $t \in T$ is contained in at least g jobs of \mathcal{J}_{i}^{\prime}; on the other hand, by the algorithm, t is contained in at most g jobs of \mathcal{J}_{i}. Therefore, each $t \in T$ is contained in exactly g jobs of \mathcal{J}_{i}^{\prime} (see Figure 2).

It is easy to show that \mathcal{J}_{i}^{\prime} can be partitioned into exactly g sets $\mathcal{J}_{i, 1}^{\prime}, \mathcal{J}_{i, 2}^{\prime}, \ldots, \mathcal{J}_{i, g}^{\prime}$ such that each set $\mathcal{J}_{i, l}^{\prime}$ is an independent set with respect to intersection, or in other words an independent set of the interval graph. This can be done by considering the g threads of execution of machine M_{i}, and by scheduling the jobs of \mathcal{J}^{\prime} to these threads.

Now, let us consider a job $J^{\prime} \in \mathcal{J}_{i, l}^{\prime}$ for some $1 \leq l \leq g$ (see Figure 3). By the construction, $J^{\prime} \cap T \neq \emptyset$, therefore $t^{-1}\left(J^{\prime}\right) \neq \emptyset$. Let $J^{\prime \prime}$ (resp. $J^{\prime \prime \prime}$) be the smallest (resp. biggest) job in

Fig. 3. Analysis of a job J^{\prime} assigned to machine M_{i}
$t^{-1}\left(J^{\prime}\right)$ with respect to the relation \prec. It is easy to conclude that

$$
\operatorname{span}\left(t^{-1}\left(J^{\prime}\right)\right) \leq \operatorname{len}\left(J^{\prime}\right)+\operatorname{len}\left(J^{\prime \prime}\right)+\operatorname{len}\left(J^{\prime \prime \prime}\right) .
$$

Moreover, $\operatorname{len}\left(J^{\prime}\right) \geq \max \left(\operatorname{len}\left(J^{\prime \prime}\right), \operatorname{len}\left(J^{\prime \prime \prime}\right)\right)$ because $J^{\prime} \in s\left(J^{\prime \prime}\right) \cap s\left(J^{\prime \prime \prime}\right)$. Therefore:

$$
\operatorname{span}\left(t^{-1}\left(J^{\prime}\right)\right) \leq 3 \operatorname{len}\left(J^{\prime}\right)
$$

Now, we use the union bound and sum up the above for all the jobs $J^{\prime} \in \mathcal{J}_{i, l}^{\prime}$ to get

$$
\begin{align*}
& \operatorname{span}\left(\bigcup_{J^{\prime} \in \mathcal{J}_{i, l}^{\prime}} t^{-1}\left(J^{\prime}\right)\right) \leq \sum_{J^{\prime} \in \mathcal{J}_{i, l}^{\prime}} \operatorname{span}\left(t^{-1}\left(J^{\prime}\right)\right) \\
& \quad \leq 3 \sum_{J^{\prime} \in \mathcal{J}_{i, l}^{\prime}} \operatorname{len}\left(J^{\prime}\right)=3 \cdot \operatorname{len}\left(\mathcal{J}_{i, l}^{\prime}\right) . \tag{1}
\end{align*}
$$

We note that any set $\mathcal{J}_{i, l}^{\prime}$ contains all the points of T. Thus,

$$
\begin{equation*}
\bigcup_{J^{\prime} \in \mathcal{J}_{i, l}^{\prime}} t^{-1}\left(J^{\prime}\right)=\mathcal{J}_{i+1}^{\prime} \tag{2}
\end{equation*}
$$

Combining (1) and (2) we conclude that $\operatorname{span}\left(\mathcal{J}_{i+1}^{\prime}\right) \leq 3 \cdot \operatorname{len}\left(\mathcal{J}_{i, l}^{\prime}\right)$. Summing for all g possible values of l, we have that

$$
\begin{aligned}
& g \cdot \operatorname{span}\left(\mathcal{J}_{i+1}\right)=g \cdot \operatorname{span}\left(\mathcal{J}_{i+1}^{\prime}\right) \\
& \leq 3 \sum_{l=1}^{g} \operatorname{len}\left(\mathcal{J}_{i, l}^{\prime}\right)=3 \cdot \operatorname{len}\left(\mathcal{J}_{i}^{\prime}\right) \leq 3 \cdot \operatorname{len}\left(\mathcal{J}_{i}\right)
\end{aligned}
$$

Combining the span bound and Lemma 2.3 we can now complete the analysis of the algorithm.

Proof of Theorem 2.1: By definition, all the jobs in \mathcal{J}_{i+1} are assigned to one machine, i.e. M_{i+1}. For such a set the cost of the assignment is exactly its span. Thus, FirstFit $\left(\mathcal{J}_{i+1}\right)=$ busy $_{i+1}=\operatorname{span}\left(\mathcal{J}_{i+1}\right) \leq \frac{3}{g} \operatorname{len}\left(\mathcal{J}_{i}\right)$. Let $m \geq 1$ be the number of machines used by FirstFit. Then

$$
\begin{aligned}
& \sum_{i=2}^{m} \operatorname{FirstFit}\left(\mathcal{J}_{i}\right)=\sum_{i=1}^{m-1} \operatorname{FirstFit}\left(\mathcal{J}_{i+1}\right) \\
& \leq \frac{3}{g} \sum_{i=1}^{m-1} \operatorname{len}\left(\mathcal{J}_{i}\right) \\
& <\frac{3}{g} \sum_{i=1}^{m} \operatorname{len}\left(\mathcal{J}_{i}\right)=\frac{3}{g} \operatorname{len}(\mathcal{J}) \leq 3 \cdot O P T(\mathcal{J})
\end{aligned}
$$

where the last inequality follows from the parallelism bound.
Now, using the span bound, we have that $\operatorname{FirstFit}\left(\mathcal{J}_{1}\right)=\operatorname{busy_{1}}=\operatorname{span}\left(\mathcal{J}_{1}\right) \leq \operatorname{span}(\mathcal{J}) \leq$ $O P T(\mathcal{J})$. Therefore, FirstFit $(\mathcal{J}) \leq 4 \cdot \operatorname{OPT}(\mathcal{J})$.

2.2.2 Lower Bound

Theorem 2.4 For any $\varepsilon>0$, there are infinitely many instances \mathcal{J} having infinitely many input sizes, such that $\operatorname{FirstFit}(\mathcal{J})>(3-\varepsilon) \cdot O P T(\mathcal{J})$.

Fig. 4. Instance for the proof of the lower bound
Proof: Consider the instance \mathcal{J} depicted in Figure 4. For this instance OPT uses one machine in the interval $[0,1]$, one machine in the interval $\left[2-2 \varepsilon^{\prime}, 3-2 \varepsilon^{\prime}\right]$, and $g-1$ machines in the interval $\left[1-\varepsilon^{\prime}, 2-\varepsilon^{\prime}\right]$, for a total cost of $\operatorname{OPT}(\mathcal{J})=g+1$. In contrast, FirstFit may use g machines in the interval $\left[0,3-2 \varepsilon^{\prime}\right]$ for a total cost of $\operatorname{FirstFit}(\mathcal{J})=\left(3-2 \varepsilon^{\prime}\right) g=$
$\left(3-2 \varepsilon^{\prime}\right) \frac{g}{g+1} O P T(\mathcal{J})$. Choosing g and ε^{\prime} appropriately (for example, $\varepsilon^{\prime}=\varepsilon / 4$ and $g \geq 6 / \varepsilon-1$) we get that $\operatorname{FirstFit}(\mathcal{J})>(3-\varepsilon) O P T(\mathcal{J})$.

Combining Theorems 2.1 and 2.4, we get:
Theorem 2.5 The approximation ratio of FirstFit is between 3 and 4.

3 Improved Approximations for Special Cases

3.1 Proper Interval Graphs

In this section we consider instances in which no job interval is properly contained in another. The intersection graphs for such instances are known as proper interval graphs. The simple greedy algorithm consists of two steps. In the first step, the jobs are sorted by their starting times (note that in a proper interval graph this is also the order of the jobs by completion times). In the second step the jobs are assigned to machines greedily in a NextFit manner; that is, each job is added to the currently filled machine, unless its addition is invalid, in which case a new machine is opened.

Greedy Algorithm for Proper Interval Graphs

1. Sort the jobs in non-decreasing order by their starting points, i.e., $s_{1} \leq s_{2} \leq$ $\ldots \leq s_{n}$.
2. Scan the list of jobs in the above order. If possible, assign the next job to the currently filled machine; else (adding the job forms a $(g+1)$-clique in the currently filled machine), open a new machine for the currently scheduled job.

Theorem 3.1 The Greedy algorithm yields a 2-approximation for proper interval graphs.
Proof: Let N_{t} denote the number of jobs active at time t. Also, let M_{t}^{O} denote the number of machines active at time t in an optimal schedule, and let M_{t}^{A} denote the number of machines active at time t in the schedule output by the algorithm.

Claim 1 For any $t, N_{t} \geq\left(M_{t}^{A}-2\right) g+2$.

Proof: For a given $t>0$, let $m=M_{t}^{A}$. At the time the m-th machine is opened, there are $m-1$ additional active machines. The first one processes at least one job, and the following $m-2$ machines process exactly g jobs each. Suppose that the first machine processes at time t job J. Any job J^{\prime} assigned to another machine starts after J and ends after J, since the graph is proper; thus, J^{\prime} is active at time t. Since there are m active machines at time t, the same count of $(m-2) g+2$ jobs is still valid (additional jobs may have started). Therefore $N_{t} \geq(m-2) g+2$.

Claim 2 For any $t, M_{t}^{O} \geq M_{t}^{A}-1$
Proof: Clearly, for any $t \geq 0, M_{t}^{O} \geq\left\lceil N_{t} / g\right\rceil$. Using Claim 1, we get that

$$
M_{t}^{O} \geq\left\lceil N_{t} / g\right\rceil \geq\left\lceil\left(\left(M_{t}^{A}-2\right) g+1\right) / g\right\rceil \geq M_{t}^{A}-1
$$

The cost of the entire schedule of an instance \mathcal{J} is obtained by taking the integral of M_{t}^{A} over all values of t in $[0, \operatorname{span}(\mathcal{J})]$; thus, we have that $A L G(\mathcal{J}) \leq O P T(\mathcal{J})+\operatorname{span}(\mathcal{J})$. In particular, since $O P T(\mathcal{J}) \geq \operatorname{span}(\mathcal{J})$, this gives the statement of the theorem.
We note that by a slight ranked-shift of the jobs in the middle column of the instance described in Figure 4, we get a proper interval graph, for which algorithm FirstFit provides an approximation ratio arbitrarily close to 3 .

3.2 Bounded Length Instances

Given an instance \mathcal{J} of our problem, recall that $\operatorname{len}\left(J_{j}\right)=c_{j}-s_{j}$ is the length of J_{j}. We now consider instances in which for all $1 \leq j \leq n$, len $\left(J_{j}\right) \in[1, d]$, where $d \geq 1$ is some fixed constant. We further assume that the start times of all jobs are integral. ${ }^{2}$

Algorithm Bounded_Length accepts as parameter some $\varepsilon>0$. In Step 2. of the algorithm we use guessing. By this we refer to enumeration over the set of possible values, using a polynomial number of steps. Also, in Step 2(e) we solve the b-matching problem, defined as follows. Given a graph $G=(V, E)$ with degree constraints $b: V \rightarrow \mathbb{N}$ for the vertices, a b-matching is a subset of edges $M \subseteq E$ such that for all $v \in V$ the number of edges in M

[^2]
Bounded_Length Algorithm

1. Partition the input to segments as follows. All intervals I_{j} for which $s_{j} \in$ $[d \cdot(r-1), d \cdot r)$ for some integer $r \geq 1$ are assigned to segment r. Let $S(\mathcal{J})$ be the resulting set of segments and $R=|S(\mathcal{J})|$.
2. For each segment $1 \leq r \leq R$ do
(a) Guess $k_{r} \geq 1$, the number of machines in some optimal schedule for segment r, and $O P T_{r}$, the minimum total busy time of these machines.
(b) Guess the vector of busy intervals of the machines allotted to segment r, where the busy interval of machine i is given by $\left(s\left(M_{i}\right), b u s y_{i}\right): s\left(M_{i}\right) \in$ [$d \cdot(r-1), d \cdot r)$ is the start time of the busy interval, and busy $y_{i}=(1+\varepsilon)^{m}$, for some $0 \leq m \leq\left\lceil\log _{1+\varepsilon}(2 d)\right\rceil$, is the length of the busy interval.
(c) Guess a partition of the intervals in segment r to independent sets (IS), i.e., the vector containing the number of ISs of each type assigned to the machines. Let $N_{r} \leq k_{r} \cdot g$ be the total number of ISs in the solution.
(d) Construct a bipartite graph $B=(U, V, E)$, where $U=\left(M_{1}, \ldots, M_{k_{r}}\right)$ and $V=\left(I S_{1}, \ldots, I S_{N_{r}}\right)$. There is an edge $\left(M_{i}, I S_{h}\right)$ if $I S_{h}$ can be scheduled on M_{i}. For any vertex $M_{i} \in U$ let $b\left(M_{i}\right)=g$, and for any $I S_{h} \in V$ let $b\left(I S_{h}\right)=1$.
(e) Solve for B the maximum b-matching problem, and assign the jobs to the machines as determined by the matching.
incident to v is at most $b(v)$. The b-matching problem is to find a b-matching M of maximum size. The problem is known to be solvable in polynomial time (see, e.g., [11]).

Theorem 3.2 The Bounded_Length Algorithm is a polynomial time $(2+\varepsilon)$-approximation algorithm for the scheduling problem.

We use in the proof the next lemma.
Lemma 3.3 Let $\operatorname{OPT}(\mathcal{J})$ be the value of an optimal solution for \mathcal{J}, and let $\operatorname{OPT}(S(\mathcal{J}))$ be the value of an optimal solution for \mathcal{J} in which jobs from different segments in $S(\mathcal{J})$ are not assigned to the same machine. Then $\operatorname{OPT}(S(\mathcal{J})) \leq 2 \cdot \operatorname{OPT}(\mathcal{J})$.

Proof: The proof is by construction. Given an optimal solution for \mathcal{J}, construct a solution in which jobs from different segments are not assigned to the same machine, such that the total busy time of the resulting schedule is at most twice the total busy time of the given schedule. For each machine in the optimal solution that spans over jobs from k adjacent
segments in $S(\mathcal{J})$, simply replace the machine by k machines, each processing only the jobs of a single segment.

Claim 3 Any single machine M_{i} of OPT with busy time busy is replaced by a set of machines having total busy time at most $2 b u s y_{i}$.

Proof: Let S_{1}, S_{2}, \ldots be the segments formed in Step 1., ordered from left to right. Consider a machine M_{i} of $O P T$, and assume that it covers jobs from $S_{i_{1}}, \ldots, S_{i_{1}+k-1}$. It is therefore replaced by k machines, each processing the jobs of a different segment. Denote these machines by $M_{i_{1}}, \ldots, M_{i_{1}+k-1}$. Note that the busy intervals of two adjacent machines may intersect. However, for any $r \in\left\{i_{1}, \ldots, i_{1}+k-3\right\}$, the busy intervals of M_{r}, M_{r+2} do not intersect. This follows from the fact that the length of any interval is at most d. In other words, the completion time of any job in \mathcal{J}_{r} is in $[d \cdot(r-1), d \cdot(r+1))$.

By the above discussion, the total busy time of the machine M_{i} is at least the total busy time of the even-indexed replacing machines, as well as at least the busy time of the odd-indexed replacing machines. Formally, assume w.l.o.g that k is even, then $b u s y_{i} \geq b u s y_{i_{1}}+b u s y_{i_{1}+2}+$ $\ldots+$ busy $_{i_{1}+k-2}$, and also busy $i_{i} \geq$ busy $_{i_{1}+1}+$ busy $_{i_{1}+3}+\ldots+$ busy $_{i_{1}+k-1}$. Sum up the two inequalities to get $2 b u s y_{i} \geq \sum_{\ell=i_{1}}^{i_{1}+k-1}$ busy $_{\ell}$ as required.

The statement of the lemma follows by summing up the busy times of all the machines replacing the machines of $O P T$.

Proof of Theorem 3.2: We first show that, given any $\varepsilon>0$, Step 2. of the Bounded_Length algorithm yields in polynomial time a $(1+\varepsilon)$-approximation for the minimum busy time of segment r, for any $1 \leq r \leq R$. Formally, let busy y_{i}^{o} be the busy time of M_{i} in some optimal schedule for segment r, and suppose that $(1+\varepsilon)^{h} \leq b u s y_{i}^{o} \leq(1+\varepsilon)^{h+1}$, then by taking busy $_{i}=(1+\varepsilon)^{h+1}$ we increase the busy time of M_{i} at most by factor $1+\varepsilon$. Also, given a correct guess of the vector of busy intervals of the machines in segment r and the partition of the jobs in segment r to independent sets, the algorithm finds in B a b-matching in which all the IS vertices are matched. Thus, using Lemma 3.3, and taking in the algorithm $\varepsilon^{\prime}=\varepsilon / 2$, we get a $(2+\varepsilon)$-approximation ratio.

For the running time of the algorithm, we note that the optimal total busy time for any segment $1 \leq r \leq R$ satisfies $1 \leq O P T_{r} \leq n \cdot d$ and can be guessed within factor $1+\varepsilon$ in $O(\ln n / \varepsilon)$ steps. Similarly, the total number of machines assigned to segment r is at most n, and can be guessed in $O(\log n)$ steps. Indeed, we can obtain this way the number of machines used in some optimal solution, by guessing a value $O P T_{r} \leq k \leq 2 O P T_{r}$ and setting the busy intervals of machines $O P T_{r}+1, \ldots, k$ to be of length zero. Also, since for any $1 \leq i \leq k$,
$s\left(M_{i}\right)$ can get at most d values, and busyi can get $\log _{1+\varepsilon}(2 d)=O(\ln d / \varepsilon)$ possible values (since all job lengths are in $[1, d]$), the busy intervals vector can be guessed in polynomial time.

Finally, the vector of independent sets assigned to the machines in segment r can be guessed in polynomial time. Indeed, any independent set consists of at most d intervals. The number of possible starting points for these intervals is d. Also, for a given independent set, $I S_{\ell}$, let $s\left(I S_{\ell}\right)$ be the earliest start time of any interval in $I S_{\ell}$, and let $c\left(I S_{\ell}\right)$ be the latest completion time of any interval in $I S_{\ell}$, then the stretch of $I S_{\ell}$ is $S t\left(I S_{\ell}\right)=c\left(I S_{\ell}\right)-s\left(I S_{\ell}\right)$. In guessing the stretch values for the independent sets, we round up the stretch of any IS to the nearest integral power of $1+\varepsilon$. Thus, the number of possible stretch values is $O(\ln d / \varepsilon)$. For each independent set $I S_{\ell}$, we keep the start times of all intervals, as well as the stretch of $I S_{\ell}$, i.e., the vector $\left(s_{i_{1}}, \ldots s_{i_{t}}, S t\left(I S_{\ell}\right)\right)$, where $1 \leq t \leq d$. The number of starting points for the intervals in $I S_{\ell}$ is given by

$$
\sum_{t=1}^{d}\binom{d+t-1}{t-1} \leq d\binom{2 d-1}{d-1} \leq\left(\frac{(2 d-1) e}{d-1}\right)^{d-1} \leq d(2 e)^{d}
$$

where e is the base of the natural logarithm. Since the stretch of any independent set can take $O(\ln d / \varepsilon)$ values, we have that the number of possible IS vectors is $O\left(d \cdot(2 e)^{d} \ln d / \varepsilon\right)$, which is a constant. Hence, we can guess in polynomial time the set of ISs assigned to the machines of segment r. Clearly, all other steps of the algorithm can be implemented in polynomial time.

4 Application to Optical Networks

4.1 Background

All-optical networks have been widely studied in recent years, due to the promise of data transmission rates several orders of magnitudes higher than current networks [14,16]. The focus of optimality criteria lies in the hardware costs. This is modeled by considering the utilization of the electronic switching units (Add-Drop Multiplexers, or ADMs) and the signal regenerators. The communication is done by lightpaths, which are simple paths in the network. A lightpath connecting nodes u and v is using one ADM in each of its endpoints u and v, and one regenerator in each intermediate node. An ADM at a node can serve two lightpaths of the same wavelength, provided they do not have any edge in common.

Often, the traffic supported by the network requires transmission rates which are lower than the full wavelength capacity; thus, the network operator has to be able to put together (or, groom) low-capacity demands into the high capacity fibers. Taking g to be the grooming factor, for some $g \geq 1$, this can be viewed as assigning colors to the lightpaths so that at most g of them can share one edge.

In terms of ADMs, this means that at most g lightpaths of the same wavelength can enter through the same edge to any node and use the same ADM (thus saving $g-1$ ADMs). Similarly, in terms of regenerators, if g lightpaths of the same wavelength need such a component at the same node, they can share a single regenerator (thus saving $g-1$ regenerators). The goal is to minimize the cost measured by $\alpha \cdot \mid$ REGENERATORs $|+(1-\alpha) \cdot| A D M s \mid$, for any value $0 \leq \alpha \leq 1$. This grooming prblem has become central in optimizing switching costs for optical networks.

The notion of traffic grooming was introduced in [12] for ring topologies. The case where $\alpha=0$, namely, minimizing the number of ADMs, is the topic of many previous studies. Our results for scheduling with bounded parallelism apply to the case where $\alpha=1$, where the goal is to minimize the number of regenerators. The ADMs minimization problem was shown to be NP-complete in [6] for rings and for arbitrary values of $g \geq 1$. An algorithm with approximation ratio of $2 \ln g$, for any fixed $g \geq 1$ on a ring topology, was given in [10]. The regenerator cost is considered in $[5,4]$ although with a different cost measure. The problem of minimizing the number of regenerators was shown to be NP-complete in [8] (see also in [19]). The paper [8] also presents an approximation algorithm for the problem of minimizing every linear combination of the total number of ADMs and regenerators. The algorithm is polynomial in the input size (and in g) and yields an approximation ratio of $O(\sqrt{g} \log n)$.

4.2 Results

Given a network with a path topology, a grooming factor $g \geq 1$ and a set of lightpaths $\left\{p_{j}=\right.$ $\left.\left(a_{j}, b_{j}\right) \mid j=1, \ldots, n\right\}$, we need to color the lightpaths such that the number of regenerators is minimized. This yields the following instance of our scheduling problem. The set of jobs is $\left\{J_{j}=\left[a_{j}+1 / 2, b_{j}-1 / 2\right] \mid j=1, \ldots, n\right\}$, and the parallelism parameter is g. Grooming up to g lightpaths in the optical network implies that the corresponding jobs are scheduled on the same machine, and vice versa. In other words, different colors in the optical network instance correspond to different machines in the scheduling problem instance, and a regenerator at node i corresponds to the interval $[i-1 / 2, i+1 / 2]$. A lightpath uses a given regenerator if and
only if the corresponding job contains the interval corresponding to the given regenerator. Therefore, the cost of a coloring of the lightpaths is equal to the cost of the schedule of the corresponding set of jobs.

Thus, we have the following results for the grooming problem. (i) A 4-approximation algorithm for an arbitrary set of lightpaths (following Section 2); (ii) a 2-approximation algorithm for instances where any two lightpaths intersect (this follows from the algorithm for cliques in the Appendix, and also from [8]; see discussion in Section 1.3), (iii) a 2-approximation algorithm for instances where no lightpath is properly contained in another (following Section 3.1), and (iv) a $(2+\varepsilon)$ - approximation algorithms for instances in which the ratio between the lengths of any two lightpaths is bounded by d, where $d \geq 1$ is some fixed constant (following Section 3.2).

References

[1] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to approximating resource allocation and scheduling. Journal of the ACM, pages 1-23, 2000.
[2] S. Bhatia, J. Chuzhoy, A. Freund, and J. Naor. Algorithmic aspects of bandwidth trading. ACM Transactions on Algorithms, 3(1), 2007.
[3] P. Brucker. Scheduling Algorithms, 5th ed. Springer, 2007.
[4] S. Chen, I. Ljubic, and S. Raghavan. The regenerator location problem. Networks, 55(3):205220, 2010.
[5] S. Chen and S. Raghavan. The regenerator location problem. In Proceedings of the International Network Optimization Conference (INOC), 2007.
[6] A. L. Chiu and E. H. Modiano. Traffic grooming algorithms for reducing electronic multiplexing costs in wdm ring networks. Journal of Lightwave Technology, 18(1):2-12, January 2000.
[7] J. Y-T. Leung (ed.). Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRS Press, 2004.
[8] M. Flammini, G. Monaco, L. Moscardelli, M. Shalom, and S. Zaks. Approximating the traffic grooming problem with respect to adms and oadms. In 14th International European Conference on Parallel and Distributed Computing (EuroPar), Las Palmas de Gran Canaria, Spain, August 26-29, 2008.
[9] M. Flammini, G. Monaco, L. Moscardelli, M. Shalom, and S. Zaks. Optimizing regenerator cost in traffic grooming. Submitted for publication, 2010.
[10] M. Flammini, L. Moscardelli, M. Shalom, and S. Zaks. Approximating the traffic grooming problem. In ISAAC, pages 915-924, 2005.
[11] H. N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In STOC, pages 448-456, 1983.
[12] O. Gerstel, R. Ramaswami, and G. Sasaki. Cost effective traffic grooming in wdm rings. In INFOCOM'98, Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies, 1998.
[13] D. Gijswijt, V. Jost, and M. Queyranne. Clique partitioning of interval graphs with submodular costs on the cliques. RAIRO-Operations Research-Recherche Opérationelle, 41(3):275-287, 2007.
[14] P. E. Green. Fiber-Optic Communication Networks. Prentice Hall, 1992.
[15] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir. Real-time scheduling to minimize machine busy times. Submitted, 2010.
[16] R. Klasing. Methods and problems of wavelength-routing in all-optical networks. In Proceeding of the MFCS'98 Workshop on Communication, August 24-25, Brno, Czech Republic, pages 1-9, 1998.
[17] M. Y. Kovalyov, C. T. Ng, and T. C. E. Cheng. Fixed interval scheduling: Models, applications, computational complexity and algorithms. European Journal of Operational Research, 178(2):331-342, 2007.
[18] E. Lawler, J.K. Lenstra, A.H.G.R. Kan, and D. Shmoys. Sequencing and scheduling: Algorithms and complexity. S. C. Graves, A. H. G. Rinnooy Kan, and P. Zipkin (eds.), Handbooks in Operations Research and Management Science, 4, 1993.
[19] P. Winkler and L. Zhang. Wavelength assignment and generalized interval graph coloring. In SODA, pages 830-831, 2003.

Appendix: Approximation Algorithm for Cliques

If all jobs of an instance intersect with each other, then the resulting interval graph is a clique. In this section we present a 2 -approximation algorithm for this class. For a given clique C, select an arbitrary point t which belongs to all the intervals. Such a point must
exist by the definition of a clique in an interval graph. For a fixed $t \geq 0$, for each job j, let $\delta_{j}=\max \left(t-s_{j}, c_{j}-t\right)$ be the maximal distance of an endpoint of j from the point t. Also, let $\Delta=\max _{j \in C} \delta_{j}$ (see Figure 5).

Fig. 5. The left-right partition of a clique for an arbitrary intersection point t.

Scheduling Algorithm for a Clique

1. Sort the jobs in the clique C by their distance from t such that $\delta_{1} \geq \ldots \geq \delta_{|C|}$.
2. While not all jobs are assigned to machines, open a new machine and assign to it the next g jobs (the last machine may be assigned less than g jobs).

The algorithm schedules the jobs on $\left\lceil\frac{|C|}{g}\right\rceil$ machines: the g jobs with the maximal δ_{j} values are assigned to M_{1}, and so on.

Theorem 4.1 Let $\operatorname{OPT}(C)$ be the total busy time in an optimal solution for C, then the total busy time of the machines used by the algorithm is at most $2 \cdot O P T(C)$.

Proof: Let $m=\left\lceil\frac{|C|}{g}\right\rceil$ be the number of machines used by the algorithm. Clearly, the number of machines used in any optimal solution is $m^{\prime} \geq m$.

For any machine M_{i} in some optimal solution, let $\delta_{O}^{i}=\max _{\left\{j \in \mathcal{J}_{i}\right\}} \delta_{j}$, where \mathcal{J}_{i} is the set of jobs assigned to M_{i}. Sort the machines of the optimal solution such that $\delta_{O}^{1} \geq \delta_{O}^{2} \geq \ldots \geq \delta_{O}^{m^{\prime}}$. Since M_{i} processes at least one job of length at least δ_{O}^{i}, it holds that busy $\geq \delta_{O}^{i}$. Thus, $O P T(C) \geq \sum_{i=1}^{m^{\prime}} \delta_{O}^{i}$.

Similarly, for any machine M_{i} used by the algorithm, let $\delta_{A}^{i}=\max _{\left\{j \in \mathcal{J}_{i}\right\}} \delta_{j}$. Sort the machines used by the algorithm such that $\delta_{A}^{1} \geq \delta_{A}^{2} \geq \ldots \geq \delta_{A}^{m}$. Note that this is also the order in which the machines were filled. The busy interval of M_{i} is therefore contained in $\left[t-\delta_{A}^{i}, t+\delta_{A}^{i}\right]$, implying that $b u s y_{i} \leq 2 \delta_{A}^{i}$, and thus, $A L G(C) \leq 2 \sum_{i=1}^{m} \delta_{A}^{i}$. The following claim completes the proof.

Claim $4 \sum_{i=1}^{m} \delta_{A}^{i} \leq \sum_{i=1}^{m^{\prime}} \delta_{O}^{i}$.
Proof: It suffices to show that for any $1 \leq i \leq m, \delta_{A}^{i} \leq \delta_{O}^{i}$. For $i=1$, both δ_{A}^{1} and δ_{O}^{1} are equal to Δ. For any $i>1$, note that the $i-1$ first machines filled by the algorithm are assigned the $g(i-1)$ jobs with the maximal δ_{j} values. Therefore, the remaining $n-g(i-1)$ jobs have the minimal maximal distance from point t among any set of $n-g(i-1)$ jobs. This distance is exactly δ_{A}^{i}. In particular, the set of $n-g(i-1)$ jobs that are assigned on the remaining machines in the optimal solution has at least the same maximal distance from t. Thus, $\forall i, \delta_{A}^{i} \leq \delta_{O}^{i}$.

[^0]: » A preliminary version of this work has been published in the Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2009).
 ${ }^{\star \star}$ This work was partially supported by the PRIN 2008 research project COGENT (Computational and GamE-theoretic aspects of uncoordinated NeTworks), funded by the Italian Ministry of University and Research.

 Email addresses: flammini@di.univaq.it (Michele Flammini),
 gianpiero.monaco@di.univaq.it (Gianpiero Monaco), moscardelli@sci.unich.it (Luca Moscardelli), hadas@cs.technion.ac.il (Hadas Shachnai), cmshalom@telhai.ac.il
 (Mordechai Shalom), tami@idc.ac.il (Tami Tamir), zaks@cs.technion.ac.il (Shmuel Zaks).

[^1]: ${ }^{1}$ We refer here to the p-batch scheduling model (see e.g. Chapter 8 in [3]).

[^2]: ${ }^{2}$ Such instances show up, e.g., in optical networks, where the jobs represent lightpaths between pairs of nodes (see Section 4).

