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Abstract. The placement of regenerators in optical networks has be-
come an active area of research during the last years. Given a set of
lightpaths in a network G and a positive integer d, regenerators must be
placed in such a way that in any lightpath there are no more than d hops
without meeting a regenerator. While most of the research has focused
on heuristics and simulations, the first theoretical study of the problem
has been recently provided in [10], where the considered cost function is
the number of locations in the network hosting regenerators. Neverthe-
less, in many situations a more accurate estimation of the real cost of the
network is given by the total number of regenerators placed at the nodes,
and this is the cost function we consider. Furthermore, in our model we
assume that we are given a finite set of p possible traffic patterns (each
given by a set of lightpaths), and our objective is to place the minimum
number of regenerators at the nodes so that each of the traffic patterns
is satisfied. While this problem can be easily solved when d = 1 or p = 1,
we prove that for any fixed d, p ≥ 2 it does not admit a PTAS, even if G
has maximum degree at most 3 and the lightpaths have length O(d). We
complement this hardness result with a constant-factor approximation
algorithm with ratio ln(d · p). We then study the case where G is a path,
proving that the problem is NP-hard for any d, p ≥ 2, even if there are
two edges of the path such that any lightpath uses at least one of them.
Interestingly, we show that the problem is polynomial-time solvable in
paths when all the lightpaths share the first edge of the path, as well as
when the number of lightpaths sharing an edge is bounded. Finally, we
generalize our model in two natural directions, which allows us to cap-
ture the model of [10] as a particular case, and we settle some questions
that were left open in [10].
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Fig. 1. A simplified optical network: amplifiers introduce noise into the signal, which
needs to be regenerated after at most d = 3 hops. When the signal is regenerated
through an ROADM, a different regenerator is needed for each wavelength.

1 Introduction

1.1 Background

In modern optical networks, high-speed signals are sent through optical fibers
using WDM (Wavelength Division Multiplexing) technology. Networks with each
fiber typically carrying around 80 wavelengths are operational, whereas networks
with a few hundreds wavelengths per fiber are already experimental. As the en-
ergy of the signal decreases with the traveled distance, optical amplifiers are
required every some fixed distance (a typical value being around 100 km). How-
ever, optical amplifiers introduce noise into the signal, so after a certain number
of amplifications, the optical signal needs to be regenerated in order to keep
the SNR (Signal-to-Noise Ratio) above a specified threshold. In current technol-
ogy, the signal is regenerated as follows. An ROADM (Reconfigurable Optical
Add-Drop Multiplexer) has the capability of inserting/extracting a given num-
ber of wavelengths (typically, around 4) to/from the optical fiber. Then, for each
extracted wavelength, an optical regenerator is needed to regenerate the signal
carried by that wavelength. That is, at a given optical node, one needs as many
regenerators as wavelengths one wants to regenerate. See Fig. 1 for a simplified
illustration of the aforementioned devices in the case when the network is a path
and the fiber carries 3 wavelengths.

The problem of placing regenerators in optical networks has attracted the
attention of several recent research works [5, 8, 9, 13,18, 19,22, 23]. Mostly, these
articles propose heuristics and run simulations in order to reduce the number of
regenerators, but no theoretical analysis is presented. Recently, the first theoret-
ical study of the problem has been done by Flammini et al. in [10]. In the next
paragraph we discuss how our model differs from the one studied in [10].

Nowadays the cost of a regenerator is considerably higher than the cost of
an ROADM (as an example, $160K vs $50K). Moreover, the regenerator cost
is per wavelength, as opposed to ROADM cost that is payed once per several
wavelengths. Therefore the total number of regenerators seems to be the right
cost to minimize. Another possible criterion is to minimize the number of loca-
tions (that is, the number of nodes) in which optical regenerators are placed.
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This measure is the one assumed in [10], which makes sense when the dominant
cost is given by the set-up of new optical nodes, or when the equipment to be
placed at each node is the same for all nodes. Nevertheless, the total number of
regenerators seem to be a better estimate of the real cost of the network, and
therefore we consider this cost in this article.

It is worth mentioning here that when all the connection requests are known
a priori, minimizing the number of regenerators is an easy task. Indeed, suppose
that the maximum number of hops a lightpath can make without meeting a
regenerator is an integer d (in the example of Fig. 1, we have d = 3). Then, for
each lightpath `, we need to place one regenerator every d consecutive vertices
in `, to get an optimal solution.

Unfortunately, when designing a network, it is usually the case that the traffic
requests are not known in advance. For instance, the traffic in a given network
may change dramatically depending on whether in the foreseeable future an
Internet supplier or an email storage server opens or closes a site within the
area of the network. In such a situation of uncertain traffic forecast, a common
approach in order to minimize capital expenses is to predeploy (or overprovision)
resources [12,14,15,17]. That is, the network is designed to satisfy several possible
traffic patterns. A similar setting arises in networks in which there are several
possible traffic configurations that alternate according to some phenomena, like
the weather, the season, an overflow of the capacity of another network, or a
breakdown. In that case, the network must be designed so that it can satisfy
each of the traffic configurations independently.

In our model, we assume that we are given a finite set of p possible traffic
patterns (each given by a set of lightpaths), and our objective is to place the
minimum total number of regenerators at the nodes so that each of the traffic
patterns is satisfied. That is, the number of regenerators that must be placed
at a node of the network is the maximum of the number of regenerators needed
by any of the traffic patterns at that node. We aim at minimizing the total
number of regenerators placed at the network. We formally define the problem
in Section 1.2.

1.2 Definitions

Given an undirected underlying graph G = (V,E) that corresponds to the net-
work topology, a lightpath is a simple path in G. That is, we assume that the
routing of the requests is given (see [10] for complexity results when the routing
of the requests is not given). We also assume that lightpaths sharing an edge
use different wavelengths. That is, we deal with optical networks without traffic
grooming [2]. The length of a lightpath is the number of edges it contains. We
consider symmetric lightpaths, that is, a lightpath with endpoints u and v con-
sists of a request from u to v and a request from v to u. The internal vertices
(resp. edges) of a lightpath or a path ` are the vertices (resp. edges) in ` different
from the first and the last one. Given an integer d, a lightpath ` is d-satisfied
if there are no d consecutive internal vertices in ` without a regenerator. A set
of lightpaths is d-satisfied if each of its lightpaths is d-satisfied. Given p sets of
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lightpaths L1, . . . , Lp, with Li = {`i,j | 1 ≤ j ≤ xi}, we consider the union of
all lightpaths in the p sets ∪Li = {`i,j | 1 ≤ i ≤ p, 1 ≤ j ≤ xi}. An assignment
of regenerators is a function reg : V × ∪Li → {0, 1}, where reg(v, `) = 1 if and
only if a regenerator is used at vertex v by lightpath `.

We study the following problem: given p ≥ 1 sets of lightpaths, and a distance
d ≥ 1, determine the smallest number of regenerators that d-satisfy each of the
p sets. Formally, for two fixed integers d, p ≥ 1, the optimization problem we
study is defined as follows.

(d, p)-Total Regenerators ((d, p)-TR)

Input: A graph G = (V,E) and p sets of lightpaths L = {L1, . . . , Lp}.

Output: A function reg : V × ∪Li → {0, 1} such that each lightpath
in ∪Li is d-satisfied.

Objective: Minimize
∑

v∈V reg(v), where
reg(v) = max1≤i≤p

∑
`∈Li

reg(v, `).

Note that, as mentioned in Section 1.1, in the case p = 1 (that is, when there
is a single set of requests) the problem is trivially solvable in polynomial time, as
the regenerators can be placed for each lightpath independently. The case d = 1
is not interesting either, as for each internal vertex v ∈ V and each ` ∈ ∪Li,
reg(v, `) = 1, so there is only one feasible solution, which is optimal.

1.3 Our contribution

In this article we provide hardness results and approximation algorithms for the
(d, p)-Total Regenerators problem ((d, p)-TR for short). We first prove in
Section 3 that for any two fixed integers d, p ≥ 2, (d, p)-TR does not admit a
PTAS unless P = NP, even if the underlying graph G has maximum degree at
most 3, and the lightpaths have length at most

⌈
7d
2

⌉
. In Section 4 we complement

this hardness result with a constant-factor approximation algorithm with ratio
min{p,Hd·p−1/2}, where Hn =

∑n
i=1

1
i is the n-th harmonic number. Section 5

is devoted to the case where the underlying graph is a path. In Section 5.1 we
prove that (d, p)-TR is NP-hard in paths for any fixed d, p ≥ 2, even if there are
two edges of the path such that any lightpath uses at least one of them. Inter-
estingly, we show in Section 5.2 that the problem is polynomial-time solvable in
paths when all the lightpaths share the first (or the last) edge, as well as when
the maximum number of lightpaths sharing an edge is bounded. In Section 6
we generalize the model presented in Section 1.2 in two natural directions. This
generalization allows us to capture the model of [10] as a particular case, and to
settle some complexity issues that were left open in [10]. (Since we need some
further definitions, we defer the precise statement of these results to Section 6.)
Finally, in Section 7 we conclude the article and present a number of interesting
avenues for further research. We first provide in Section 2 some standard prelim-
inaries. Due to space limitations, almost all proofs are omitted in this extended
abstract (except that of Proposition 1); they can be found in [16].
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2 Preliminaries

We use standard terminology concerning graphs, complexity, and algorithms; see
for instance [7, 11,21], respectively.

Graphs. All the graphs considered in this article are simple and undirected.
Given a graph G we denote by V (G) and E(G) the sets of vertices and edges of
G, respectively. If H is a subgraph of G, we denote it by H ⊆ G. Given a graph G
and F ⊆ E(G), we denote by G[F ] the subgraph of G induced by the edges in F
together with their endpoints. Given a a subset S ⊆ V (G), we define NG[S] to be
the set of vertices of V (G) at distance at most 1 from at least one vertex of S. If
S = {v}, we simply use the notation NG[v]. We also define NG(v) = NG[v]\{v}.
The degree of a vertex v ∈ V (G) is defined as degG(v) = |NG(v)|. A graph is
cubic if all its vertices have degree 3. The maximum degree of G is defined as
∆(G) = maxv∈V (G) degG(v). A matching in a graph is a set of disjoint edges,
and a vertex cover is a set of vertices that contains at least one endpoint of
every edge. The girth of a graph is the length of a shortest cycle. Given an
edge e = {u, v}, by subdividing e we denote the operation of deleting the edge
e = {u, v}, adding a new vertex w, and making it adjacent to both u and v.

Complexity and approximation algorithms. Given an NP-hard mini-
mization problem Π, we say that a polynomial-time algorithm A is an α-
approximation algorithm for Π, with α ≥ 1, if for any instance of Π, algorithm
A finds a feasible solution with cost at most α times the cost of an optimal
solution. For instance, a maximal matching constitutes a 2-approximation al-
gorithm for the Minimum Vertex Cover problem. In complexity theory, the
class APX (Approximable) contains all NP-hard optimization problems that
can be approximated within a constant factor. The subclass PTAS (Polyno-
mial Time Approximation Scheme) contains the problems that can be approx-
imated in polynomial time within a ratio 1 + ε for any fixed ε > 0. In some
sense, these problems can be considered to be easy NP-hard problems. Since,
assuming P 6= NP, there is a strict inclusion of PTAS in APX (for instance,
Minimum Vertex Cover ∈ APX \ PTAS), an APX-hardness result for a
problem implies the non-existence of a PTAS unless P = NP.

3 Hardness results for general graphs

In this section we prove that, unless P = NP, (d, p)-TR does not admit a PTAS
for any d, p ≥ 2, even if the underlying graph G has maximum degree at most 3
and the lightpaths have length O(d). Before this, we need two technical results
to be used in the reductions.

Minimum Vertex Cover is known to be APX-hard in cubic graphs [1].
By a simple reduction, we prove in the following lemma that Minimum Vertex
Cover is also APX-hard in a class of graphs with degree at most 3 and high
girth, which will be used in the sequel.
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Lemma 1. Minimum Vertex Cover is APX-hard in the class of graphs H
obtained from cubic graphs by subdividing each edge twice.

Thomassen proved [20] that the edges of any cubic graph can be two-colored
such that each monochromatic connected component is a path of length at most
5. In addition, the aforementioned coloring can be found in polynomial time [20].
Note that in such a coloring of a cubic graph, each vertex appears exactly once
as an endpoint of a path, and exactly once as an internal vertex of another path.
We next show that this result can be easily extended to graphs with maximum
degree at most 3.

Lemma 2. The edges of any graph with maximum degree at most 3 can be two-
colored such that each monochromatic connected component is a path of length
at most 5.

We are now ready to announce the main results of this section. For the sake
of presentation, we first present in Proposition 1 the result for d = p = 2, and
then we show in Theorem 1 how to extend the reduction to any fixed d, p ≥ 2.

Proposition 1. (2, 2)-TR does not admit a PTAS unless P = NP, even if G
has maximum degree at most 3 and the lightpaths have length at most 7.

Proof: The reduction is from Minimum Vertex Cover (VC for short) in the
class of graphs H obtained from cubic graphs by subdividing each edge twice,
which does not admit a PTAS by Lemma 1 unless P = NP. Note that by
construction any graph in H has girth at least 9. Given a graph H ∈ H as
instance of Vertex Cover, we proceed to build an instance of (2, 2)-TR. We
set G = H, so G has maximum degree at most 3.

To define the two sets of lightpaths L1 and L2, let {E1, E2} be the parti-
tion of E(H) given by the two-coloring of Lemma 2. Therefore, each connected
component of H[E1] and H[E2] is a path of length at most 5. Each such path
in H[E1] (resp. H[E2]) will correspond to a lightpath in L1 (resp. L2), which
we proceed to define. A key observation is that, as the paths of the two-coloring
have length at most 5, if any endpoint v of a such path P had one neighbor in
V (P ), it would create a cycle of length at most 6, a contradiction to the fact
that the girth of H is at least 9. Therefore, as the vertices of H have degree 2
or 3, any endpoint v of a path P has at least one neighbor in V (H) \ V (P ).

We are now ready to define the lightpaths. Let P be a path with endpoints
u, v, and let u′ (resp. v′) be a neighbor of u (resp. v) in V (H) \ V (P ), such that
u′ 6= v′ (such distinct vertices u′, v′ exist by the above observation and by the
fact that H has girth at least 9). The lightpath associated with P consists of the
concatenation of {u′, u}, P , and {v, v′}. Therefore, the length of each lightpath is
at most 7. This completes the construction of the instance of (2, 2)-TR. Observe
that since we assume that d = 2, regenerators must be placed in such a way
that all the internal edges of a lightpath (that is, all the edges except the first
and the last one) have a regenerator in at least one of their endpoints. We can
assume without loss of generality that no regenerator serves at the endpoints
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of a lightpath, as the removal of such regenerators does not alter the feasibility
of a solution. Note that in our construction, each vertex of G appears as an
internal vertex in at most two lightpaths, one (possibly) in L1 and the other one
(possibly) in L2, so we can assume that reg(v) ≤ 1 for any v ∈ V (G).

We now claim that OPTVC(H) = OPT(2,2)−TR(G, {L1, L2}).
Indeed, let first S ⊆ V (H) be a vertex cover of H. Placing one regenerator

at each vertex belonging to S defines a feasible solution to (2, 2)-TR in G with
cost |S|, as at least one endpoint of each internal edge of each lightpath contains
a regenerator. Therefore, OPTVC(H) ≥ OPT(2,2)−TR(G, {L1, L2}).

Conversely, suppose we are given a solution to (2,2)-TR in G using r re-
generators. Since E1 and E2 are a partition of E(G) = E(H) and the set of
internal edges of the lightpaths in L1 (resp. L2) is equal to E1 (resp. E2), the
regenerators placed at the endpoints of the internal edges of the lightpaths
constitute a vertex cover of H of size at most r. Therefore, OPTVC(H) ≤
OPT(2,2)−TR(G, {L1, L2}).

Summarizing, since OPTVC(H) = OPT(2,2)−TR(G, {L1, L2}) and any
feasible solution to OPT(2,2)−TR(G, {L1, L2}) using r regenerators defines a
vertex cover of H of size at most r, the existence of a PTAS for (2, 2)-TR
would imply the existence of a PTAS for Vertex Cover in the class of graphs
H, which is a contradiction by Lemma 1, unless P = NP. �

Theorem 1. (d, p)-TR does not admit a PTAS for any d ≥ 2 and any p ≥ 2
unless P = NP, even if the underlying graph G satisfies ∆(G) ≤ 3 and the
lightpaths have length at most

⌈
7d
2

⌉
.

4 Approximation algorithms for general graphs

We have seen in Section 3 that (d, p)-TR does not admit a PTAS for d, p ≥ 2
unless P = NP. In this section we complement this result with a constant-factor
approximation algorithm for (d, p)-TR in general graphs.

Theorem 2. For any fixed d, p ≥ 2, there is a polynomial-time approximation
algorithm for the (d, p)-TR problem with ratio min{p,Hd·p−1/2}, where Hd·p =∑d·p

i=1
1
i .

Note that for big d, p, Hd·p ≈ ln d + ln p + 1/2, so comparing both approxi-
mation ratios, we have that p < ln d+ ln p when d = Ω(2p).

5 The case of the path

In this section we focus on the case where the network topology is a path,
which is one of the most important topologies in real networks, as well as one of
the most natural and apparently simplest underlying graphs to study. Clearly,
hardness results obtained for this topology will carry over all topologies. We first
present in Section 5.1 an NP-hardness result, and then we present in Section 5.2
polynomial-time optimal algorithms for two families of instances.
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5.1 Hardness result

The model of [10] turns out to be polynomial-time solvable when the underlying
topology is a tree. Surprisingly enough, in this section we show that our model
remains NP-hard even if the network is a path, for any d ≥ 2 and any p ≥ 2.

Theorem 3. (d, p)-TR is NP-hard in paths for any d, p ≥ 2, even if each vertex
is the endpoint of at most 10 lightpaths and there are two edges of the path such
that any lightpath uses at least one of them.

5.2 Polynomial-time solvable cases

In this section we present polynomial-time optimal algorithms in path networks
for two restricted sets of instances, namely when all the lightpaths go through a
common edge, and when the load of the path (that is, the maximum number of
lightpaths in any set Li crossing an edge of the path) is bounded by a logarithmic
function of the input size.

Edge instances. In an edge instance there is an edge e ∈ E(G) that is used
by all the lightpaths. Note that the instance built in the reduction used in the
proof of Theorem 3 contains two edges intersecting all the lightpaths.

Proposition 2. For any fixed d, p ≥ 2, there is a polynomial-time algorithm
solving the (d, p)-TR problem for edge instances in a path where all the lightpaths
share the first edge.

Bounded load. From Theorem 3 it follows that (d, p)-TR remains hard in
paths even if each vertex is the endpoint of at most 10 lightpaths. It turns out
that if we further impose that not only the number of lightpaths per vertex is
bounded, but also the load of the path is bounded by an appropriate function
of the size of the instance, then the problem is solvable in polynomial time.
Intuitively, this special case of instances is in the opposite extreme of the edge
instances, where there is an edge with unbounded load.

Proposition 3. For any fixed d, p ≥ 2, (d, p)-TR is polynomial-time solvable
in paths if the load is O

(
log |I|−log p

2p·log d

)
= O(log |I|), where |I| is the size of the

instance.

6 More general settings

In this section we generalize the (d, p)-TR problem in two natural directions.
Namely, in Section 6.1 we allow the number p of traffic patterns to be unbounded,
and in Section 6.2 we introduce a parameter k that bounds the number of re-
generators that can be placed at a vertex. Technologically, the latter constraint
captures the fact of having a bounded number of ROADMs per vertex, as the
number of wavelengths (and therefore, the number of regenerators) an ROADM
can handle is usually not too big (see Section 1.1).
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6.1 Unbounded number of sets of lightpaths

If p is part of the input, then (d, p)-TR contains as a particular case the model
studied in [10] (the so-called location problem, denoted RPP/∞/+ in [10]). In-
deed, if each set of lightpaths consists of a single lightpath (that is, when p is the
number of lightpaths), then the objective is to place the minimum number of
regenerators such that each lightpath is satisfied. Therefore, the hardness results
stated in [10] also apply to this more general setting, in particular an approxima-
tion lower bound of Ω(log(d · p)) unless NP can be simulated in subexponential
time. Note that this hardness bound matches the approximation ratio given by
Theorem 2. Nevertheless, note also that the approximation algorithm presented
in Theorem 2 runs in polynomial time only for bounded p.

We now reformulate the problem studied in [10] using our terminology. Let
d ≥ 1 be a fixed integer.

d-Regenerators Location (d-RL)

Input: An undirected graph G = (V,E) and a set of lightpaths L.

Output: A function reg : V × L→ {0, 1} such that each lightpath
` ∈ L is d-satisfied.

Objective: Minimize
∑

v∈V reg(v), where reg(v) = max`∈L reg(v, `).

Note that in the above problem, reg(v) ∈ {0, 1}. We now focus on the case
d = 2 of d-RL.

Remark 1 Given an instance of 2-RL in a graph G, the problem can be reduced
to a Minimum Vertex Cover problem in a subgraph of G. Indeed, given a set
of lightpaths L, remove the first and the last edge of each lightpath, and let H
be the subgraph of G defined by the union of the edges in the modified lightpaths.
It is then clear that the minimum number of regenerators to 2-satisfy all the
lightpaths in L equals the size of a minimum vertex cover of H.

By Remark 1 and König’s theorem [7], it follows that 2-RL can be solved in
polynomial time in bipartite graphs. This result extends the results of [10] for
d = 2, where it is proved that for any d ≥ 2, d-RL is polynomial-time solvable in
trees and rings. Finally, it also follows from Remark 1 that 2-RL admits a PTAS
in planar graphs [4] and, more generally, in any family of minor-free graphs [6].

6.2 Bounded number of regenerators per vertex

From a technological point of view, it makes sense to introduce a parameter
k that limits the number of regenerators that can be used at a single vertex.
Adding this restriction to the d-RL problem, we get the following problem, which
is actually the so-called k-location problem and denoted RPP/k/+ in [10].

Again, we restate the problem using our terminology. Let d, k ≥ 1 be two
fixed integers.
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(d, k)-Regenerators Location ((d, k)-RL)

Input: An undirected graph G = (V,E) and a set of lightpaths L.

Output: A function reg : V × L→ {0, 1} such that each lightpath ` ∈ L
is d-satisfied and reg(v) ≤ k, where reg(v) =

∑
`∈L reg(v, `).

Objective: Minimize |{v ∈ V | reg(v) > 0}|.

We now resolve two questions that were left open in [10]. Namely, it is proved
in [10] that given an instance of (3, 1)-RL, it is NP-complete to decide whether
there exists a feasible solution for it, which in particular implies that the (3, 1)-
RL problem itself is NP-hard to approximate within any ratio. In the following
we prove that, surprisingly, the situation changes for d = 2 and k = 1. More
precisely, it is in P to decide whether there exists a feasible solution for an
instance of (2, 1)-RL, while finding an optimal one is NP-hard.

Proposition 4. Given an instance of (2, 1)-RL, it can be decided in polynomial
time whether there exists a feasible solution for it, while the (2, 1)-RL problem
itself (that is, finding an optimal solution) is NP-hard.

7 Conclusions and further research

In this article we presented a theoretical study of the problem of placing regen-
erators in optical networks, so that on each lightpath we must put a regenerator
every at most d hops. The cost is the total number of regenerators. We considered
the case when p possible traffic patters are given (each by a set of lightpaths), and
the objective is to place the minimum number of regenerators satisfying each of
these patterns. This setting arises naturally when designing real networks under
uncertain traffic forecast. The problem is called (d, p)-Total Regenerators
problem, or (d, p)-TR for short. We now summarize our results and propose a
number of lines for further research.

We proved that for any fixed d, p ≥ 2, (d, p)-TR does not admit a PTAS
unless P = NP, even if the network topology has maximum degree at most
3, by reduction from Minimum Vertex Cover in cubic graphs. It would be
interesting to determine which is the explicit approximation lower bound given
by Theorem 1. The recent results of Austrin et al. [3] about the hardness of
Minimum Vertex Cover in graphs of bounded degree may shed some light
on this question. We provided an approximation algorithm for (d, p)-TR with
constant ratio ln(d · p), by reducing it to Minimum Set Cover. Finding a
polynomial-time approximation algorithm matching the hardness lower bound
given by Theorem 1 seems to be a challenging task.

We proved that (d, p)-TR is NP-hard in paths for any d, p ≥ 2, by reduction
from the problem of whether the edges of a tripartite graph can be partitioned
into triangles. It is easy to see that the proof of Theorem 3 can be adapted to
the case when the network is a ring. In fact, the optimization version where the
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objective is to find the maximum number of edge-disjoint triangles is APX-hard
in tripartite graphs [2]. Nevertheless, the proof of Theorem 3 does not allow – at
least, without major modifications – to prove that (d, p)-TR does not admit a
PTAS in paths, although we believe that this is indeed the case. Therefore, the
existence of a PTAS for (d, p)-TR in paths, trees, rings, or even planar graphs,
remains open.

The NP-hardness result for paths holds even if there are two edges of the path
such that each lightpath uses at least one of them. In order to better understand
what makes the problem hard, we proved that when all lightpaths use the first
(or the last) edge of the path, then (d, p)-TR becomes polynomial-time solvable
for any d, p ≥ 2. Between these two cases, it only remains to settle the complexity
of the case when the edge shared by all lightpaths is an internal edge of the path,
which could be polynomial or NP-hard.

Still in the path, but in the opposite extreme of the type of instances, we
also proved that (d, p)-TR can be solved in polynomial time when the maximum
number of lightpaths using an edge is logarithmically bounded by the size of the
instance. It may be possible to extend our dynamic programming approach to
trees with instances having this property, and even to graphs with bounded
treewidth.

We generalized our model by allowing the number of sets of lightpaths to
be unbounded, and by introducing a parameter k that bounds the number of
regenerators that can be placed at a node. This way, the model studied in [10]
becomes a particular case. We settled several complexity questions that were
left open in [10] concerning the case k = 1 and d = 2. As future work, it seems
to be of high importance to consider the parameter k in the original statement
of our (d, p)-TR problem.
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